OSSIA
Open Scenario System for Interactive Application
Loading...
Searching...
No Matches
tinyspline.c
1#define TINYSPLINE_EXPORT
2#include "tinyspline.h"
3
4#if !defined(TINYSPLINE_NO_SERIALIZATION)
5#include "parson.h" /* serialization */
6#include <stdio.h> /* FILE, fopen */
7#endif
8
9#include <stdlib.h> /* malloc, free */
10#include <math.h> /* fabs, sqrt, acos */
11#include <string.h> /* memcpy, memmove */
12#include <stdarg.h> /* varargs */
13
14/* Suppress some useless MSVC warnings. */
15#ifdef _MSC_VER
16#pragma warning(push)
17/* address of dllimport */
18#pragma warning(disable:4232)
19/* function not inlined */
20#pragma warning(disable:4710)
21/* byte padding */
22#pragma warning(disable:4820)
23/* meaningless deprecation */
24#pragma warning(disable:4996)
25/* Spectre mitigation */
26#pragma warning(disable:5045)
27#endif
28
29#define INIT_OUT_BSPLINE(in, out) \
30 if ((in) != (out)) \
31 ts_int_bspline_init(out);
32
33
34
45{
46 size_t deg;
47 size_t dim;
48 size_t n_ctrlp;
49 size_t n_knots;
50};
51typedef struct tsBSplineImpl tsBSplineImpl;
52
57{
59 size_t k;
60 size_t s;
61 size_t h;
62 size_t dim;
63 size_t n_points;
64};
65typedef struct tsDeBoorNetImpl tsDeBoorNetImpl;
66
67void
68ts_int_bspline_init(tsBSpline *spline)
69{
70 spline->pImpl = NULL;
71}
72
73size_t
74ts_int_bspline_sof_state(const tsBSpline *spline)
75{
76 return sizeof(tsBSplineImpl) +
77 ts_bspline_sof_control_points(spline) +
78 ts_bspline_sof_knots(spline);
79}
80
81tsReal *
82ts_int_bspline_access_ctrlp(const tsBSpline *spline)
83{
84 return (tsReal *) (& spline->pImpl[1]);
85}
86
87tsReal *
88ts_int_bspline_access_knots(const tsBSpline *spline)
89{
90 return ts_int_bspline_access_ctrlp(spline) +
91 ts_bspline_len_control_points(spline);
92}
93
95ts_int_bspline_access_ctrlp_at(const tsBSpline *spline,
96 size_t index,
97 tsReal **ctrlp,
98 tsStatus *status)
99{
100 const size_t num = ts_bspline_num_control_points(spline);
101 if (index >= num) {
102 TS_RETURN_2(status, TS_INDEX_ERROR,
103 "index (%lu) >= num(control_points) (%lu)",
104 (unsigned long) index,
105 (unsigned long) num)
106 }
107 *ctrlp = ts_int_bspline_access_ctrlp(spline) +
108 index * ts_bspline_dimension(spline);
109 TS_RETURN_SUCCESS(status)
110}
111
113ts_int_bspline_access_knot_at(const tsBSpline *spline,
114 size_t index,
115 tsReal *knot,
116 tsStatus *status)
117{
118 const size_t num = ts_bspline_num_knots(spline);
119 if (index >= num) {
120 TS_RETURN_2(status, TS_INDEX_ERROR,
121 "index (%lu) >= num(knots) (%lu)",
122 (unsigned long) index,
123 (unsigned long) num)
124 }
125 *knot = ts_int_bspline_access_knots(spline)[index];
126 TS_RETURN_SUCCESS(status)
127}
128
129void
130ts_int_deboornet_init(tsDeBoorNet *net)
131{
132 net->pImpl = NULL;
133}
134
135size_t
136ts_int_deboornet_sof_state(const tsDeBoorNet *net)
137{
138 return sizeof(tsDeBoorNetImpl) +
139 ts_deboornet_sof_points(net) +
140 ts_deboornet_sof_result(net);
141}
142
143tsReal *
144ts_int_deboornet_access_points(const tsDeBoorNet *net)
145{
146 return (tsReal *) (& net->pImpl[1]);
147}
148
149tsReal *
150ts_int_deboornet_access_result(const tsDeBoorNet *net)
151{
152 if (ts_deboornet_num_result(net) == 2) {
153 return ts_int_deboornet_access_points(net);
154 } else {
155 return ts_int_deboornet_access_points(net) +
156 /* Last point in `points`. */
157 (ts_deboornet_len_points(net) -
158 ts_deboornet_dimension(net));
159 }
160}
169size_t
170ts_bspline_degree(const tsBSpline *spline)
171{
172 return spline->pImpl->deg;
173}
174
175size_t
176ts_bspline_order(const tsBSpline *spline)
177{
178 return ts_bspline_degree(spline) + 1;
179}
180
181size_t
182ts_bspline_dimension(const tsBSpline *spline)
183{
184 return spline->pImpl->dim;
185}
186
187size_t
188ts_bspline_len_control_points(const tsBSpline *spline)
189{
190 return ts_bspline_num_control_points(spline) *
191 ts_bspline_dimension(spline);
192}
193
194size_t
195ts_bspline_num_control_points(const tsBSpline *spline)
196{
197 return spline->pImpl->n_ctrlp;
198}
199
200size_t
201ts_bspline_sof_control_points(const tsBSpline *spline)
202{
203 return ts_bspline_len_control_points(spline) * sizeof(tsReal);
204}
205
206const tsReal *
207ts_bspline_control_points_ptr(const tsBSpline *spline)
208{
209 return ts_int_bspline_access_ctrlp(spline);
210}
211
213ts_bspline_control_points(const tsBSpline *spline,
214 tsReal **ctrlp,
215 tsStatus *status)
216{
217 const size_t size = ts_bspline_sof_control_points(spline);
218 *ctrlp = (tsReal*) malloc(size);
219 if (!*ctrlp) TS_RETURN_0(status, TS_MALLOC, "out of memory")
220 memcpy(*ctrlp, ts_int_bspline_access_ctrlp(spline), size);
221 TS_RETURN_SUCCESS(status)
222}
223
225ts_bspline_control_point_at_ptr(const tsBSpline *spline,
226 size_t index,
227 const tsReal **ctrlp,
228 tsStatus *status)
229{
230 tsReal *vals;
231 tsError err;
232 TS_TRY(try, err, status)
233 TS_CALL(try, err, ts_int_bspline_access_ctrlp_at(
234 spline, index, &vals, status))
235 *ctrlp = vals;
236 TS_CATCH(err)
237 *ctrlp = NULL;
238 TS_END_TRY_RETURN(err)
239}
240
242ts_bspline_set_control_points(tsBSpline *spline,
243 const tsReal *ctrlp,
244 tsStatus *status)
245{
246 const size_t size = ts_bspline_sof_control_points(spline);
247 memmove(ts_int_bspline_access_ctrlp(spline), ctrlp, size);
248 TS_RETURN_SUCCESS(status)
249}
250
252ts_bspline_set_control_point_at(tsBSpline *spline,
253 size_t index,
254 const tsReal *ctrlp,
255 tsStatus *status)
256{
257 tsReal *to;
258 size_t size;
259 tsError err;
260 TS_TRY(try, err, status)
261 TS_CALL(try, err, ts_int_bspline_access_ctrlp_at(
262 spline, index, &to, status))
263 size = ts_bspline_dimension(spline) * sizeof(tsReal);
264 memcpy(to, ctrlp, size);
265 TS_END_TRY_RETURN(err)
266}
267
268size_t
269ts_bspline_num_knots(const tsBSpline *spline)
270{
271 return spline->pImpl->n_knots;
272}
273
274size_t
275ts_bspline_sof_knots(const tsBSpline *spline)
276{
277 return ts_bspline_num_knots(spline) * sizeof(tsReal);
278}
279
280const tsReal *
281ts_bspline_knots_ptr(const tsBSpline *spline)
282{
283 return ts_int_bspline_access_knots(spline);
284}
285
287ts_bspline_knots(const tsBSpline *spline,
288 tsReal **knots,
289 tsStatus *status)
290{
291 const size_t size = ts_bspline_sof_knots(spline);
292 *knots = (tsReal*) malloc(size);
293 if (!*knots) TS_RETURN_0(status, TS_MALLOC, "out of memory")
294 memcpy(*knots, ts_int_bspline_access_knots(spline), size);
295 TS_RETURN_SUCCESS(status)
296}
297
299ts_bspline_knot_at(const tsBSpline *spline,
300 size_t index,
301 tsReal *knot,
302 tsStatus *status)
303{
304 return ts_int_bspline_access_knot_at(spline, index, knot, status);
305}
306
308ts_bspline_set_knots(tsBSpline *spline,
309 const tsReal *knots,
310 tsStatus *status)
311{
312 const size_t size = ts_bspline_sof_knots(spline);
313 const size_t num_knots = ts_bspline_num_knots(spline);
314 const size_t order = ts_bspline_order(spline);
315 size_t idx, mult;
316 tsReal lst_knot, knot;
317 lst_knot = knots[0];
318 mult = 1;
319 for (idx = 1; idx < num_knots; idx++) {
320 knot = knots[idx];
321 if (ts_knots_equal(lst_knot, knot)) {
322 mult++;
323 } else if (lst_knot > knot) {
324 TS_RETURN_1(status, TS_KNOTS_DECR,
325 "decreasing knot vector at index: %lu",
326 (unsigned long) idx)
327 } else {
328 mult = 0;
329 }
330 if (mult > order) {
331 TS_RETURN_3(status, TS_MULTIPLICITY,
332 "mult(%f) (%lu) > order (%lu)",
333 knot, (unsigned long) mult,
334 (unsigned long) order)
335 }
336 lst_knot = knot;
337 }
338 memmove(ts_int_bspline_access_knots(spline), knots, size);
339 TS_RETURN_SUCCESS(status)
340}
341
343ts_bspline_set_knots_varargs(tsBSpline *spline,
344 tsStatus *status,
345 tsReal knot0,
346 double knot1,
347 ...)
348{
349 tsReal *values = NULL;
350 va_list argp;
351 size_t idx;
352 tsError err;
353
354 TS_TRY(try, err, status)
355 TS_CALL(try, err, ts_bspline_knots(
356 spline, &values, status))
357
358 values[0] = knot0;
359 values[1] = (tsReal) knot1;
360 va_start(argp, knot1);
361 for (idx = 2; idx < ts_bspline_num_knots(spline); idx++)
362 values[idx] = (tsReal) va_arg(argp, double);
363 va_end(argp);
364
365 TS_CALL(try, err, ts_bspline_set_knots(
366 spline, values, status))
367 TS_FINALLY
368 if (values) free(values);
369 TS_END_TRY_RETURN(err)
370}
371
373ts_bspline_set_knot_at(tsBSpline *spline,
374 size_t index,
375 tsReal knot,
376 tsStatus *status)
377{
378 tsError err;
379 tsReal *knots = NULL;
380 /* This is only for initialization. */
381 tsReal oldKnot = ts_int_bspline_access_knots(spline)[0];
382 TS_TRY(try, err, status)
383 TS_CALL(try, err, ts_int_bspline_access_knot_at(
384 spline, index, &oldKnot, status))
385 /* knots must be set after reading oldKnot because the catch
386 * block assumes that oldKnot contains the correct value if
387 * knots is not NULL. */
388 knots = ts_int_bspline_access_knots(spline);
389 knots[index] = knot;
390 TS_CALL(try, err, ts_bspline_set_knots(
391 spline, knots, status))
392 TS_CATCH(err)
393 /* If knots is not NULL, oldKnot contains the correct value. */
394 if (knots) knots[index] = oldKnot;
395 TS_END_TRY_RETURN(err)
396}
406ts_bspline_init(void)
407{
408 tsBSpline spline;
409 ts_int_bspline_init(&spline);
410 return spline;
411}
412
414ts_int_bspline_generate_knots(const tsBSpline *spline,
415 tsBSplineType type,
416 tsStatus *status)
417{
418 const size_t n_knots = ts_bspline_num_knots(spline);
419 const size_t deg = ts_bspline_degree(spline);
420 const size_t order = ts_bspline_order(spline);
421 tsReal fac;
422 size_t i;
423 tsReal *knots;
425 /* order >= 1 implies 2*order >= 2 implies n_knots >= 2 */
426 if (type == TS_BEZIERS && n_knots % order != 0) {
427 TS_RETURN_2(status, TS_NUM_KNOTS,
428 "num(knots) (%lu) %% order (%lu) != 0",
429 (unsigned long) n_knots, (unsigned long) order)
430 }
431
432 knots = ts_int_bspline_access_knots(spline);
433
434 if (type == TS_OPENED) {
435 knots[0] = TS_DOMAIN_DEFAULT_MIN; /* n_knots >= 2 */
437 / (n_knots - 1); /* n_knots >= 2 */
438 for (i = 1; i < n_knots-1; i++)
439 knots[i] = TS_DOMAIN_DEFAULT_MIN + i*fac;
440 knots[i] = TS_DOMAIN_DEFAULT_MAX; /* n_knots >= 2 */
441 } else if (type == TS_CLAMPED) {
442 /* n_knots >= 2*order == 2*(deg+1) == 2*deg + 2 > 2*deg - 1 */
444 / (n_knots - 2*deg - 1);
445 ts_arr_fill(knots, order, TS_DOMAIN_DEFAULT_MIN);
446 for (i = order ;i < n_knots-order; i++)
447 knots[i] = TS_DOMAIN_DEFAULT_MIN + (i-deg)*fac;
448 ts_arr_fill(knots + i, order, TS_DOMAIN_DEFAULT_MAX);
449 } else if (type == TS_BEZIERS) {
450 /* n_knots >= 2*order implies n_knots/order >= 2 */
452 / (n_knots/order - 1);
453 ts_arr_fill(knots, order, TS_DOMAIN_DEFAULT_MIN);
454 for (i = order; i < n_knots-order; i += order)
455 ts_arr_fill(knots + i,
456 order,
457 TS_DOMAIN_DEFAULT_MIN + (i/order)*fac);
458 ts_arr_fill(knots + i, order, TS_DOMAIN_DEFAULT_MAX);
459 }
460 TS_RETURN_SUCCESS(status)
461}
462
464ts_bspline_new(size_t num_control_points,
465 size_t dimension,
466 size_t degree,
467 tsBSplineType type,
468 tsBSpline *spline,
469 tsStatus *status)
470{
471 const size_t order = degree + 1;
472 const size_t num_knots = num_control_points + order;
473 const size_t len_ctrlp = num_control_points * dimension;
474
475 const size_t sof_real = sizeof(tsReal);
476 const size_t sof_impl = sizeof(tsBSplineImpl);
477 const size_t sof_ctrlp_vec = len_ctrlp * sof_real;
478 const size_t sof_knots_vec = num_knots * sof_real;
479 const size_t sof_spline = sof_impl + sof_ctrlp_vec + sof_knots_vec;
480 tsError err;
481
482 ts_int_bspline_init(spline);
483
484 if (dimension < 1) {
485 TS_RETURN_0(status, TS_DIM_ZERO, "unsupported dimension: 0")
486 }
487 if (num_knots > TS_MAX_NUM_KNOTS) {
488 TS_RETURN_2(status, TS_NUM_KNOTS,
489 "unsupported number of knots: %lu > %i",
490 (unsigned long) num_knots, TS_MAX_NUM_KNOTS)
491 }
492 if (degree >= num_control_points) {
493 TS_RETURN_2(status, TS_DEG_GE_NCTRLP,
494 "degree (%lu) >= num(control_points) (%lu)",
495 (unsigned long) degree,
496 (unsigned long) num_control_points)
497 }
498
499 spline->pImpl = (tsBSplineImpl *) malloc(sof_spline);
500 if (!spline->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory")
501
502 spline->pImpl->deg = degree;
503 spline->pImpl->dim = dimension;
504 spline->pImpl->n_ctrlp = num_control_points;
505 spline->pImpl->n_knots = num_knots;
506
507 TS_TRY(try, err, status)
508 TS_CALL(try, err, ts_int_bspline_generate_knots(
509 spline, type, status))
510 TS_CATCH(err)
511 ts_bspline_free(spline);
512 TS_END_TRY_RETURN(err)
513}
514
516ts_bspline_new_with_control_points(size_t num_control_points,
517 size_t dimension,
518 size_t degree,
519 tsBSplineType type,
520 tsBSpline *spline,
521 tsStatus *status,
522 double first,
523 ...)
524{
525 tsReal *ctrlp = NULL;
526 va_list argp;
527 size_t i;
528 tsError err;
529
530 TS_TRY(try, err, status)
531 TS_CALL(try, err, ts_bspline_new(
532 num_control_points, dimension,
533 degree, type, spline, status))
534 TS_CATCH(err)
535 ts_bspline_free(spline);
536 TS_END_TRY_ROE(err)
537 ctrlp = ts_int_bspline_access_ctrlp(spline);
538
539 ctrlp[0] = (tsReal) first;
540 va_start(argp, first);
541 for (i = 1; i < ts_bspline_len_control_points(spline); i++)
542 ctrlp[i] = (tsReal) va_arg(argp, double);
543 va_end(argp);
544
545 TS_RETURN_SUCCESS(status)
546}
547
549ts_bspline_copy(const tsBSpline *src,
550 tsBSpline *dest,
551 tsStatus *status)
552{
553 size_t size;
554 if (src == dest) TS_RETURN_SUCCESS(status)
555 ts_int_bspline_init(dest);
556 size = ts_int_bspline_sof_state(src);
557 dest->pImpl = (tsBSplineImpl *) malloc(size);
558 if (!dest->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory")
559 memcpy(dest->pImpl, src->pImpl, size);
560 TS_RETURN_SUCCESS(status)
561}
562
563void
564ts_bspline_move(tsBSpline *src,
565 tsBSpline *dest)
566{
567 if (src == dest) return;
568 dest->pImpl = src->pImpl;
569 ts_int_bspline_init(src);
570}
571
572void
573ts_bspline_free(tsBSpline *spline)
574{
575 if (spline->pImpl) free(spline->pImpl);
576 ts_int_bspline_init(spline);
577}
586tsReal
587ts_deboornet_knot(const tsDeBoorNet *net)
588{
589 return net->pImpl->u;
590}
591
592size_t
593ts_deboornet_index(const tsDeBoorNet *net)
594{
595 return net->pImpl->k;
596}
597
598size_t
599ts_deboornet_multiplicity(const tsDeBoorNet *net)
600{
601 return net->pImpl->s;
602}
603
604size_t
605ts_deboornet_num_insertions(const tsDeBoorNet *net)
606{
607 return net->pImpl->h;
608}
609
610size_t
611ts_deboornet_dimension(const tsDeBoorNet *net)
612{
613 return net->pImpl->dim;
614}
615
616size_t
617ts_deboornet_len_points(const tsDeBoorNet *net)
618{
619 return ts_deboornet_num_points(net) *
620 ts_deboornet_dimension(net);
621}
622
623size_t
624ts_deboornet_num_points(const tsDeBoorNet *net)
625{
626 return net->pImpl->n_points;
627}
628
629size_t
630ts_deboornet_sof_points(const tsDeBoorNet *net)
631{
632 return ts_deboornet_len_points(net) * sizeof(tsReal);
633}
634
635const tsReal *
636ts_deboornet_points_ptr(const tsDeBoorNet *net)
637{
638 return ts_int_deboornet_access_points(net);
639}
640
642ts_deboornet_points(const tsDeBoorNet *net,
643 tsReal **points,
644 tsStatus *status)
645{
646 const size_t size = ts_deboornet_sof_points(net);
647 *points = (tsReal*) malloc(size);
648 if (!*points) TS_RETURN_0(status, TS_MALLOC, "out of memory")
649 memcpy(*points, ts_int_deboornet_access_points(net), size);
650 TS_RETURN_SUCCESS(status)
651}
652
653size_t
654ts_deboornet_len_result(const tsDeBoorNet *net)
655{
656 return ts_deboornet_num_result(net) *
657 ts_deboornet_dimension(net);
658}
659
660size_t
661ts_deboornet_num_result(const tsDeBoorNet *net)
662{
663 return ts_deboornet_num_points(net) == 2 ? 2 : 1;
664}
665
666size_t
667ts_deboornet_sof_result(const tsDeBoorNet *net)
668{
669 return ts_deboornet_len_result(net) * sizeof(tsReal);
670}
671
672const tsReal *
673ts_deboornet_result_ptr(const tsDeBoorNet *net)
674{
675 return ts_int_deboornet_access_result(net);
676}
677
679ts_deboornet_result(const tsDeBoorNet *net,
680 tsReal **result,
681 tsStatus *status)
682{
683 const size_t size = ts_deboornet_sof_result(net);
684 *result = (tsReal*) malloc(size);
685 if (!*result) TS_RETURN_0(status, TS_MALLOC, "out of memory")
686 memcpy(*result, ts_int_deboornet_access_result(net), size);
687 TS_RETURN_SUCCESS(status)
688}
698ts_deboornet_init(void)
699{
700 tsDeBoorNet net;
701 ts_int_deboornet_init(&net);
702 return net;
703}
704
706ts_int_deboornet_new(const tsBSpline *spline,
707 tsDeBoorNet *net,
708 tsStatus *status)
709{
710 const size_t dim = ts_bspline_dimension(spline);
711 const size_t deg = ts_bspline_degree(spline);
712 const size_t order = ts_bspline_order(spline);
713 const size_t num_points = (size_t)(order * (order+1) * 0.5f);
714 /* Handle `order == 1' which generates too few points. */
715 const size_t fixed_num_points = num_points < 2 ? 2 : num_points;
716
717 const size_t sof_real = sizeof(tsReal);
718 const size_t sof_impl = sizeof(tsDeBoorNetImpl);
719 const size_t sof_points_vec = fixed_num_points * dim * sof_real;
720 const size_t sof_net = sof_impl + sof_points_vec;
721
722 net->pImpl = (tsDeBoorNetImpl *) malloc(sof_net);
723 if (!net->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory")
724
725 net->pImpl->u = 0.f;
726 net->pImpl->k = 0;
727 net->pImpl->s = 0;
728 net->pImpl->h = deg;
729 net->pImpl->dim = dim;
730 net->pImpl->n_points = fixed_num_points;
731 TS_RETURN_SUCCESS(status)
732}
733
734void
735ts_deboornet_free(tsDeBoorNet *net)
736{
737 if (net->pImpl) free(net->pImpl);
738 ts_int_deboornet_init(net);
739}
740
742ts_deboornet_copy(const tsDeBoorNet *src,
743 tsDeBoorNet *dest,
744 tsStatus *status)
745{
746 size_t size;
747 if (src == dest) TS_RETURN_SUCCESS(status)
748 ts_int_deboornet_init(dest);
749 size = ts_int_deboornet_sof_state(src);
750 dest->pImpl = (tsDeBoorNetImpl *) malloc(size);
751 if (!dest->pImpl) TS_RETURN_0(status, TS_MALLOC, "out of memory")
752 memcpy(dest->pImpl, src->pImpl, size);
753 TS_RETURN_SUCCESS(status)
754}
755
756void
757ts_deboornet_move(tsDeBoorNet *src,
758 tsDeBoorNet *dest)
759{
760 if (src == dest) return;
761 dest->pImpl = src->pImpl;
762 ts_int_deboornet_init(src);
763}
773ts_int_cubic_point(const tsReal *point,
774 size_t dim,
775 tsBSpline *spline,
776 tsStatus *status)
777{
778 const size_t size = dim * sizeof(tsReal);
779 tsReal *ctrlp = NULL;
780 size_t i;
781 tsError err;
782 TS_CALL_ROE(err, ts_bspline_new(
783 4, dim, 3,
784 TS_CLAMPED, spline, status))
785 ctrlp = ts_int_bspline_access_ctrlp(spline);
786 for (i = 0; i < 4; i++) {
787 memcpy(ctrlp + i*dim,
788 point,
789 size);
790 }
791 TS_RETURN_SUCCESS(status)
792}
793
795ts_int_thomas_algorithm(const tsReal *a,
796 const tsReal *b,
797 const tsReal *c,
798 size_t num,
799 size_t dim,
800 tsReal *d,
801 tsStatus *status)
802{
803 size_t i, j, k, l;
804 tsReal m, *cc = NULL;
805 tsError err;
806
807 if (dim == 0) {
808 TS_RETURN_0(status, TS_DIM_ZERO,
809 "unsupported dimension: 0")
810 }
811 if (num <= 1) {
812 TS_RETURN_1(status, TS_NUM_POINTS,
813 "num(points) (%lu) <= 1",
814 (unsigned long) num)
815 }
816 cc = (tsReal *) malloc(num * sizeof(tsReal));
817 if (!cc) TS_RETURN_0(status, TS_MALLOC, "out of memory")
818
819 TS_TRY(try, err, status)
820 /* Forward sweep. */
821 if (fabs(b[0]) <= fabs(c[0])) {
822 TS_THROW_2(try, err, status, TS_NO_RESULT,
823 "error: |%f| <= |%f|", b[0], c[0])
824 }
825 /* |b[i]| > |c[i]| implies that |b[i]| > 0. Thus, the following
826 * statements cannot evaluate to division by zero.*/
827 cc[0] = c[0] / b[0];
828 for (i = 0; i < dim; i++)
829 d[i] = d[i] / b[0];
830 for (i = 1; i < num; i++) {
831 if (fabs(b[i]) <= fabs(a[i]) + fabs(c[i])) {
832 TS_THROW_3(try, err, status, TS_NO_RESULT,
833 "error: |%f| <= |%f| + |%f|",
834 b[i], a[i], c[i])
835 }
836 /* |a[i]| < |b[i]| and cc[i - 1] < 1. Therefore, the
837 * following statement cannot evaluate to division by
838 * zero. */
839 m = 1.f / (b[i] - a[i] * cc[i - 1]);
840 /* |b[i]| > |a[i]| + |c[i]| implies that there must be
841 * an eps > 0 such that |b[i]| = |a[i]| + |c[i]| + eps.
842 * Even if |a[i]| is 0 (by which the result of the
843 * following statement becomes maximum), |c[i]| is less
844 * than |b[i]| by an amount of eps. By substituting the
845 * previous and the following statements (under the
846 * assumption that |a[i]| is 0), we obtain c[i] / b[i],
847 * which must be less than 1. */
848 cc[i] = c[i] * m;
849 for (j = 0; j < dim; j++) {
850 k = i * dim + j;
851 l = (i-1) * dim + j;
852 d[k] = (d[k] - a[i] * d[l]) * m;
853 }
854 }
855
856 /* Back substitution. */
857 for (i = num-1; i > 0; i--) {
858 for (j = 0; j < dim; j++) {
859 k = (i-1) * dim + j;
860 l = i * dim + j;
861 d[k] -= cc[i-1] * d[l];
862 }
863 }
864 TS_FINALLY
865 free(cc);
866 TS_END_TRY_RETURN(err)
867}
868
870ts_int_relaxed_uniform_cubic_bspline(const tsReal *points,
871 size_t n,
872 size_t dim,
873 tsBSpline *spline,
874 tsStatus *status)
875{
876 const size_t order = 4;
877 const tsReal as = 1.f/6.f;
878 const tsReal at = 1.f/3.f;
879 const tsReal tt = 2.f/3.f;
880 size_t sof_ctrlp;
881 const tsReal* b = points;
882 tsReal* s;
883 size_t i, d;
884 size_t j, k, l;
885 tsReal *ctrlp;
886 tsError err;
887
888 /* input validation */
889 if (dim == 0)
890 TS_RETURN_0(status, TS_DIM_ZERO, "unsupported dimension: 0")
891 if (n <= 1) {
892 TS_RETURN_1(status, TS_NUM_POINTS,
893 "num(points) (%lu) <= 1",
894 (unsigned long) n)
895 }
896 /* in the following n >= 2 applies */
897
898 sof_ctrlp = dim * sizeof(tsReal); /* dim > 0 implies sof_ctrlp > 0 */
899
900 s = NULL;
901 TS_TRY(try, err, status)
902 /* n >= 2 implies n-1 >= 1 implies (n-1)*4 >= 4 */
903 TS_CALL(try, err, ts_bspline_new(
904 (n-1) * 4, dim, order - 1,
905 TS_BEZIERS, spline, status))
906 ctrlp = ts_int_bspline_access_ctrlp(spline);
907
908 s = (tsReal*) malloc(n * sof_ctrlp);
909 if (!s) {
910 TS_THROW_0(try, err, status, TS_MALLOC,
911 "out of memory")
912 }
913
914 /* set s_0 to b_0 and s_n = b_n */
915 memcpy(s, b, sof_ctrlp);
916 memcpy(s + (n-1)*dim, b + (n-1)*dim, sof_ctrlp);
917
918 /* set s_i = 1/6*b_{i-1} + 2/3*b_{i} + 1/6*b_{i+1}*/
919 for (i = 1; i < n-1; i++) {
920 for (d = 0; d < dim; d++) {
921 j = (i-1)*dim+d;
922 k = i*dim+d;
923 l = (i+1)*dim+d;
924 s[k] = as * b[j];
925 s[k] += tt * b[k];
926 s[k] += as * b[l];
927 }
928 }
929
930 /* create beziers from b and s */
931 for (i = 0; i < n-1; i++) {
932 for (d = 0; d < dim; d++) {
933 j = i*dim+d;
934 k = i*4*dim+d;
935 l = (i+1)*dim+d;
936 ctrlp[k] = s[j];
937 ctrlp[k+dim] = tt*b[j] + at*b[l];
938 ctrlp[k+2*dim] = at*b[j] + tt*b[l];
939 ctrlp[k+3*dim] = s[l];
940 }
941 }
942 TS_CATCH(err)
943 ts_bspline_free(spline);
944 TS_FINALLY
945 if (s)
946 free(s);
947 TS_END_TRY_RETURN(err)
948}
949
951ts_bspline_interpolate_cubic_natural(const tsReal *points,
952 size_t num_points,
953 size_t dimension,
954 tsBSpline *spline,
955 tsStatus *status)
956{
957 const size_t sof_ctrlp = dimension * sizeof(tsReal);
958 const size_t len_points = num_points * dimension;
959 const size_t num_int_points = num_points - 2;
960 const size_t len_int_points = num_int_points * dimension;
961 tsReal *buffer, *a, *b, *c, *d;
962 size_t i, j, k, l;
963 tsError err;
964
965 ts_int_bspline_init(spline);
966 if (num_points == 0)
967 TS_RETURN_0(status, TS_NUM_POINTS, "num(points) == 0")
968 if (num_points == 1) {
969 TS_CALL_ROE(err, ts_int_cubic_point(
970 points, dimension, spline, status))
971 TS_RETURN_SUCCESS(status)
972 }
973 if (num_points == 2) {
974 return ts_int_relaxed_uniform_cubic_bspline(
975 points, num_points, dimension, spline, status);
976 }
977 /* `num_points` >= 3 */
978 buffer = NULL;
979 TS_TRY(try, err, status)
980 buffer = (tsReal *) malloc(
981 /* `a', `b', `c' (note that `c' is equal to `a') */
982 2 * num_int_points * sizeof(tsReal) +
983 /* At first: `d' Afterwards: The result of the thomas
984 * algorithm including the first and last point to be
985 * interpolated. */
986 num_points * dimension * sizeof(tsReal));
987 if (!buffer) {
988 TS_THROW_0(try, err, status, TS_MALLOC,
989 "out of memory")
990 }
991 /* The system of linear equations is taken from:
992 * http://www.bakoma-tex.com/doc/generic/pst-bspline/
993 * pst-bspline-doc.pdf */
994 a = c = buffer;
995 ts_arr_fill(a, num_int_points, 1);
996 b = a + num_int_points;
997 ts_arr_fill(b, num_int_points, 4);
998 d = b + num_int_points /* shift to the beginning of `d' */
999 + dimension; /* make space for the first point */
1000 /* 6 * S_{i+1} */
1001 for (i = 0; i < num_int_points; i++) {
1002 for (j = 0; j < dimension; j++) {
1003 k = i * dimension + j;
1004 l = (i+1) * dimension + j;
1005 d[k] = 6 * points[l];
1006 }
1007 }
1008 for (i = 0; i < dimension; i++) {
1009 /* 6 * S_{1} - S_{0} */
1010 d[i] -= points[i];
1011 /* 6 * S_{n-1} - S_{n} */
1012 k = len_int_points - (i+1);
1013 l = len_points - (i+1);
1014 d[k] -= points[l];
1015 }
1016 /* The Thomas algorithm requires at least two points. Hence,
1017 * `num_int_points` == 1 must be handled separately (let's call
1018 * it "Mini Thomas"). */
1019 if (num_int_points == 1) {
1020 for (i = 0; i < dimension; i++)
1021 d[i] *= (tsReal) 0.25f;
1022 } else {
1023 TS_CALL(try, err, ts_int_thomas_algorithm(
1024 a, b, c, num_int_points, dimension, d,
1025 status))
1026 }
1027 memcpy(d - dimension, points, sof_ctrlp);
1028 memcpy(d + num_int_points * dimension,
1029 points + (num_points-1) * dimension,
1030 sof_ctrlp);
1031 TS_CALL(try, err, ts_int_relaxed_uniform_cubic_bspline(
1032 d - dimension, num_points, dimension, spline, status))
1033 TS_CATCH(err)
1034 ts_bspline_free(spline);
1035 TS_FINALLY
1036 if (buffer) free(buffer);
1037 TS_END_TRY_RETURN(err)
1038}
1039
1040tsError
1041ts_bspline_interpolate_catmull_rom(const tsReal *points,
1042 size_t num_points,
1043 size_t dimension,
1044 tsReal alpha,
1045 const tsReal *first,
1046 const tsReal *last,
1047 tsReal epsilon,
1048 tsBSpline *spline,
1049 tsStatus *status)
1050{
1051 const size_t sof_real = sizeof(tsReal);
1052 const size_t sof_ctrlp = dimension * sof_real;
1053 const tsReal eps = (tsReal) fabs(epsilon);
1054 tsReal *bs_ctrlp; /* Points to the control points of `spline`. */
1055 tsReal *cr_ctrlp;
1056 size_t i, d;
1057 tsError err;
1058 /* [https://en.wikipedia.org/wiki/
1059 * Centripetal_Catmull%E2%80%93Rom_spline] */
1060 tsReal t0, t1, t2, t3;
1061 /* [https://stackoverflow.com/questions/30748316/
1062 * catmull-rom-interpolation-on-svg-paths/30826434#30826434] */
1063 tsReal c1, c2, d1, d2, m1, m2;
1064 tsReal *p0, *p1, *p2, *p3;
1066 ts_int_bspline_init(spline);
1067 if (dimension == 0)
1068 TS_RETURN_0(status, TS_DIM_ZERO, "unsupported dimension: 0")
1069 if (num_points == 0)
1070 TS_RETURN_0(status, TS_NUM_POINTS, "num(points) == 0")
1071 if (alpha < (tsReal) 0.0) alpha = (tsReal) 0.0;
1072 if (alpha > (tsReal) 1.0) alpha = (tsReal) 1.0;
1073
1074 /* Copy `points` to `cr_ctrlp`. Add space for `first` and `last`. */
1075 cr_ctrlp = (tsReal *) malloc((num_points + 2) * sof_ctrlp);
1076 if (!cr_ctrlp)
1077 TS_RETURN_0(status, TS_MALLOC, "out of memory")
1078 memcpy(cr_ctrlp + dimension, points, num_points * sof_ctrlp);
1079
1080 /* Remove redundant points from `cr_ctrlp`. Update `num_points`. */
1081 for (i = 1 /* 0 (`first`) is not assigned yet */;
1082 i < num_points /* skip last point (inclusive end) */;
1083 i++) {
1084 p0 = cr_ctrlp + (i * dimension);
1085 p1 = p0 + dimension;
1086 if (ts_distance(p0, p1, dimension) <= eps) {
1087 /* Are there any other points (after the one that is
1088 * to be removed) that need to be shifted? */
1089 if (i < num_points - 1) {
1090 memmove(p1, p1 + dimension,
1091 (num_points - (i + 1)) * sof_ctrlp);
1092 }
1093 num_points--;
1094 i--;
1095 }
1096 }
1097
1098 /* Check if there are still enough points for interpolation. */
1099 if (num_points == 1) { /* `num_points` can't be 0 */
1100 free(cr_ctrlp); /* The point is copied from `points`. */
1101 TS_CALL_ROE(err, ts_int_cubic_point(
1102 points, dimension, spline, status))
1103 TS_RETURN_SUCCESS(status)
1104 }
1105
1106 /* Add or generate `first` and `last`. Update `num_points`. */
1107 p0 = cr_ctrlp + dimension;
1108 if (first && ts_distance(first, p0, dimension) > eps) {
1109 memcpy(cr_ctrlp, first, sof_ctrlp);
1110 } else {
1111 p1 = p0 + dimension;
1112 for (d = 0; d < dimension; d++)
1113 cr_ctrlp[d] = p0[d] + (p0[d] - p1[d]);
1114 }
1115 p1 = cr_ctrlp + (num_points * dimension);
1116 if (last && ts_distance(p1, last, dimension) > eps) {
1117 memcpy(cr_ctrlp + ((num_points + 1) * dimension),
1118 last, sof_ctrlp);
1119 } else {
1120 p0 = p1 - dimension;
1121 for (d = 0; d < dimension; d++) {
1122 cr_ctrlp[((num_points + 1) * dimension) + d] =
1123 p1[d] + (p1[d] - p0[d]);
1124 }
1125 }
1126 num_points = num_points + 2;
1127
1128 /* Transform the sequence of Catmull-Rom splines. */
1129 bs_ctrlp = NULL;
1130 TS_TRY(try, err, status)
1131 TS_CALL(try, err, ts_bspline_new(
1132 (num_points - 3) * 4, dimension, 3,
1133 TS_BEZIERS, spline, status))
1134 bs_ctrlp = ts_int_bspline_access_ctrlp(spline);
1135 TS_CATCH(err)
1136 free(cr_ctrlp);
1137 TS_END_TRY_ROE(err)
1138 for (i = 0; i < ts_bspline_num_control_points(spline) / 4; i++) {
1139 p0 = cr_ctrlp + ((i+0) * dimension);
1140 p1 = cr_ctrlp + ((i+1) * dimension);
1141 p2 = cr_ctrlp + ((i+2) * dimension);
1142 p3 = cr_ctrlp + ((i+3) * dimension);
1143
1144 t0 = (tsReal) 0.f;
1145 t1 = t0 + (tsReal) pow(ts_distance(p0, p1, dimension), alpha);
1146 t2 = t1 + (tsReal) pow(ts_distance(p1, p2, dimension), alpha);
1147 t3 = t2 + (tsReal) pow(ts_distance(p2, p3, dimension), alpha);
1148
1149 c1 = (t2-t1) / (t2-t0);
1150 c2 = (t1-t0) / (t2-t0);
1151 d1 = (t3-t2) / (t3-t1);
1152 d2 = (t2-t1) / (t3-t1);
1153
1154 for (d = 0; d < dimension; d++) {
1155 m1 = (t2-t1)*(c1*(p1[d]-p0[d])/(t1-t0)
1156 + c2*(p2[d]-p1[d])/(t2-t1));
1157 m2 = (t2-t1)*(d1*(p2[d]-p1[d])/(t2-t1)
1158 + d2*(p3[d]-p2[d])/(t3-t2));
1159 bs_ctrlp[((i*4 + 0) * dimension) + d] = p1[d];
1160 bs_ctrlp[((i*4 + 1) * dimension) + d] = p1[d] + m1/3;
1161 bs_ctrlp[((i*4 + 2) * dimension) + d] = p2[d] - m2/3;
1162 bs_ctrlp[((i*4 + 3) * dimension) + d] = p2[d];
1163 }
1164 }
1165 free(cr_ctrlp);
1166 TS_RETURN_SUCCESS(status)
1167}
1176tsError
1177ts_int_bspline_find_knot(const tsBSpline *spline,
1178 tsReal *knot, /* in: knot; out: actual knot */
1179 size_t *idx, /* out: index of `knot' */
1180 size_t *mult, /* out: multiplicity of `knot' */
1181 tsStatus *status)
1182{
1183 const size_t deg = ts_bspline_degree(spline);
1184 const size_t num_knots = ts_bspline_num_knots(spline);
1185 const tsReal *knots = ts_int_bspline_access_knots(spline);
1186 tsReal min, max;
1187 size_t low, high;
1188
1189 ts_bspline_domain(spline, &min, &max);
1190 if (*knot < min) {
1191 /* Avoid infinite loop (issue #222) */
1192 if (ts_knots_equal(*knot, min)) *knot = min;
1193 else {
1194 TS_RETURN_2(status, TS_U_UNDEFINED,
1195 "knot (%f) < min(domain) (%f)",
1196 *knot, min)
1197 }
1198 }
1199 else if (*knot > max && !ts_knots_equal(*knot, max)) {
1200 TS_RETURN_2(status, TS_U_UNDEFINED,
1201 "knot (%f) > max(domain) (%f)",
1202 *knot, max)
1203 }
1204
1205 /* Based on 'The NURBS Book' (Les Piegl and Wayne Tiller). */
1206 if (ts_knots_equal(*knot, knots[num_knots - 1])) {
1207 *idx = num_knots - 1;
1208 } else {
1209 low = 0;
1210 high = num_knots - 1;
1211 *idx = (low+high) / 2;
1212 while (*knot < knots[*idx] || *knot >= knots[*idx + 1]) {
1213 if (*knot < knots[*idx])
1214 high = *idx;
1215 else
1216 low = *idx;
1217 *idx = (low+high) / 2;
1218 }
1219 }
1220
1221 /* Handle floating point errors. */
1222 while (*idx < num_knots - 1 && /* there is a next knot */
1223 ts_knots_equal(*knot, knots[*idx + 1])) {
1224 (*idx)++;
1225 }
1226 if (ts_knots_equal(*knot, knots[*idx]))
1227 *knot = knots[*idx]; /* set actual knot */
1228
1229 /* Calculate knot's multiplicity. */
1230 for (*mult = deg + 1; *mult > 0 ; (*mult)--) {
1231 if (ts_knots_equal(*knot, knots[*idx - (*mult-1)]))
1232 break;
1233 }
1234
1235 TS_RETURN_SUCCESS(status)
1236}
1237
1238tsError
1239ts_int_bspline_eval_woa(const tsBSpline *spline,
1240 tsReal u,
1241 tsDeBoorNet *net,
1242 tsStatus *status)
1243{
1244 const size_t deg = ts_bspline_degree(spline);
1245 const size_t order = ts_bspline_order(spline);
1246 const size_t dim = ts_bspline_dimension(spline);
1247 const size_t num_knots = ts_bspline_num_knots(spline);
1248 const size_t sof_ctrlp = dim * sizeof(tsReal);
1249
1250 const tsReal *ctrlp = ts_int_bspline_access_ctrlp(spline);
1251 const tsReal *knots = ts_int_bspline_access_knots(spline);
1252 tsReal *points = NULL;
1254 size_t k;
1255 size_t s;
1257 size_t from;
1258 size_t fst;
1259 size_t lst;
1260 size_t N;
1262 /* The following indices are used to create the DeBoor net. */
1263 size_t lidx;
1264 size_t ridx;
1265 size_t tidx;
1266 size_t r, i, d;
1267 tsReal ui;
1268 tsReal a, a_hat;
1270 tsError err;
1271
1272 points = ts_int_deboornet_access_points(net);
1273
1274 /* 1. Find index k such that u is in between [u_k, u_k+1).
1275 * 2. Setup already known values.
1276 * 3. Decide by multiplicity of u how to calculate point P(u). */
1277
1278 /* 1. */
1279 k = s = 0;
1280 TS_CALL_ROE(err, ts_int_bspline_find_knot(
1281 spline, &u, &k, &s, status))
1282
1283 /* 2. */
1284 net->pImpl->u = u;
1285 net->pImpl->k = k;
1286 net->pImpl->s = s;
1287 net->pImpl->h = deg < s ? 0 : deg-s; /* prevent underflow */
1288
1289 /* 3. (by 1. s <= order)
1290 *
1291 * 3a) Check for s = order.
1292 * Take the two points k-s and k-s + 1. If one of
1293 * them doesn't exist, take only the other.
1294 * 3b) Use de boor algorithm to find point P(u). */
1295 if (s == order) {
1296 /* only one of the two control points exists */
1297 if (k == deg || /* only the first */
1298 k == num_knots - 1) { /* only the last */
1299 from = k == deg ? 0 : (k-s) * dim;
1300 net->pImpl->n_points = 1;
1301 memcpy(points, ctrlp + from, sof_ctrlp);
1302 } else {
1303 from = (k-s) * dim;
1304 net->pImpl->n_points = 2;
1305 memcpy(points, ctrlp + from, 2 * sof_ctrlp);
1306 }
1307 } else { /* by 3a) s <= deg (order = deg+1) */
1308 fst = k-deg; /* by 1. k >= deg */
1309 lst = k-s; /* s <= deg <= k */
1310 N = lst-fst + 1; /* lst <= fst implies N >= 1 */
1311
1312 net->pImpl->n_points = (size_t)(N * (N+1) * 0.5f);
1313
1314 /* copy initial values to output */
1315 memcpy(points, ctrlp + fst*dim, N * sof_ctrlp);
1316
1317 lidx = 0;
1318 ridx = dim;
1319 tidx = N*dim; /* N >= 1 implies tidx > 0 */
1320 r = 1;
1321 for (;r <= ts_deboornet_num_insertions(net); r++) {
1322 i = fst + r;
1323 for (; i <= lst; i++) {
1324 ui = knots[i];
1325 a = (ts_deboornet_knot(net) - ui) /
1326 (knots[i+deg-r+1] - ui);
1327 a_hat = 1.f-a;
1328
1329 for (d = 0; d < dim; d++) {
1330 points[tidx++] =
1331 a_hat * points[lidx++] +
1332 a * points[ridx++];
1333 }
1334 }
1335 lidx += dim;
1336 ridx += dim;
1337 }
1338 }
1339 TS_RETURN_SUCCESS(status)
1340}
1341
1342tsError
1343ts_bspline_eval(const tsBSpline *spline,
1344 tsReal knot,
1345 tsDeBoorNet *net,
1346 tsStatus *status)
1347{
1348 tsError err;
1349 ts_int_deboornet_init(net);
1350 TS_TRY(try, err, status)
1351 TS_CALL(try, err, ts_int_deboornet_new(
1352 spline, net, status))
1353 TS_CALL(try, err, ts_int_bspline_eval_woa(
1354 spline, knot, net, status))
1355 TS_CATCH(err)
1356 ts_deboornet_free(net);
1357 TS_END_TRY_RETURN(err)
1358}
1359
1360tsError
1361ts_bspline_eval_all(const tsBSpline *spline,
1362 const tsReal *knots,
1363 size_t num,
1364 tsReal **points,
1365 tsStatus *status)
1366{
1367 const size_t dim = ts_bspline_dimension(spline);
1368 const size_t sof_point = dim * sizeof(tsReal);
1369 const size_t sof_points = num * sof_point;
1370 tsDeBoorNet net = ts_deboornet_init();
1371 tsReal *result;
1372 size_t i;
1373 tsError err;
1374 TS_TRY(try, err, status)
1375 *points = (tsReal *) malloc(sof_points);
1376 if (!*points) {
1377 TS_THROW_0(try, err, status, TS_MALLOC,
1378 "out of memory")
1379 }
1380 TS_CALL(try, err, ts_int_deboornet_new(
1381 spline,&net, status))
1382 for (i = 0; i < num; i++) {
1383 TS_CALL(try, err, ts_int_bspline_eval_woa(
1384 spline, knots[i], &net, status))
1385 result = ts_int_deboornet_access_result(&net);
1386 memcpy((*points) + i * dim, result, sof_point);
1387 }
1388 TS_CATCH(err)
1389 if (*points)
1390 free(*points);
1391 *points = NULL;
1392 TS_FINALLY
1393 ts_deboornet_free(&net);
1394 TS_END_TRY_RETURN(err)
1395}
1396
1397tsError
1398ts_bspline_sample(const tsBSpline *spline,
1399 size_t num,
1400 tsReal **points,
1401 size_t *actual_num,
1402 tsStatus *status)
1403{
1404 tsError err;
1405 tsReal *knots;
1406
1407 num = num == 0 ? 100 : num;
1408 *actual_num = num;
1409 knots = (tsReal *) malloc(num * sizeof(tsReal));
1410 if (!knots) {
1411 *points = NULL;
1412 TS_RETURN_0(status, TS_MALLOC, "out of memory")
1413 }
1414 ts_bspline_uniform_knot_seq(spline, num, knots);
1415 TS_TRY(try, err, status)
1416 TS_CALL(try, err, ts_bspline_eval_all(
1417 spline, knots, num, points, status))
1418 TS_FINALLY
1419 free(knots);
1420 TS_END_TRY_RETURN(err)
1421}
1422
1423tsError
1424ts_bspline_bisect(const tsBSpline *spline,
1425 tsReal value,
1426 tsReal epsilon,
1427 int persnickety,
1428 size_t index,
1429 int ascending,
1430 size_t max_iter,
1431 tsDeBoorNet *net,
1432 tsStatus *status)
1433{
1434 tsError err;
1435 const size_t dim = ts_bspline_dimension(spline);
1436 const tsReal eps = (tsReal) fabs(epsilon);
1437 size_t i = 0;
1438 tsReal dist = 0;
1439 tsReal min, max, mid;
1440 tsReal *P;
1441
1442 ts_int_deboornet_init(net);
1443
1444 if (dim < index) {
1445 TS_RETURN_2(status, TS_INDEX_ERROR,
1446 "dimension (%lu) <= index (%lu)",
1447 (unsigned long) dim,
1448 (unsigned long) index)
1449 }
1450 if(max_iter == 0)
1451 TS_RETURN_0(status, TS_NO_RESULT, "0 iterations")
1452
1453 ts_bspline_domain(spline, &min, &max);
1454 TS_TRY(try, err, status)
1455 TS_CALL(try, err, ts_int_deboornet_new(
1456 spline, net, status))
1457 do {
1458 mid = (tsReal) ((min + max) / 2.0);
1459 TS_CALL(try, err, ts_int_bspline_eval_woa(
1460 spline, mid, net, status))
1461 P = ts_int_deboornet_access_result(net);
1462 dist = ts_distance(&P[index], &value, 1);
1463 if (dist <= eps)
1464 TS_RETURN_SUCCESS(status)
1465 if (ascending) {
1466 if (P[index] < value)
1467 min = mid;
1468 else
1469 max = mid;
1470 } else {
1471 if (P[index] < value)
1472 max = mid;
1473 else
1474 min = mid;
1475 }
1476 } while (i++ < max_iter);
1477 if (persnickety) {
1478 TS_THROW_1(try, err, status, TS_NO_RESULT,
1479 "maximum iterations (%lu) exceeded",
1480 (unsigned long) max_iter)
1481 }
1482 TS_CATCH(err)
1483 ts_deboornet_free(net);
1484 TS_END_TRY_RETURN(err)
1485}
1486
1487void ts_bspline_domain(const tsBSpline *spline,
1488 tsReal *min,
1489 tsReal *max)
1490{
1491 *min = ts_int_bspline_access_knots(spline)
1492 [ts_bspline_degree(spline)];
1493 *max = ts_int_bspline_access_knots(spline)
1494 [ts_bspline_num_knots(spline) - ts_bspline_order(spline)];
1495}
1496
1497tsError
1498ts_bspline_is_closed(const tsBSpline *spline,
1499 tsReal epsilon,
1500 int *closed,
1501 tsStatus *status)
1502{
1503 const size_t deg = ts_bspline_degree(spline);
1504 const size_t dim = ts_bspline_dimension(spline);
1505 tsBSpline derivative;
1506 tsReal min, max;
1507 tsDeBoorNet first, last;
1508 size_t i;
1509 tsError err;
1510
1511 ts_int_bspline_init(&derivative);
1512 ts_int_deboornet_init(&first);
1513 ts_int_deboornet_init(&last);
1514
1515 TS_TRY(try, err, status)
1516 for (i = 0; i < deg; i++) {
1517 TS_CALL(try, err, ts_bspline_derive(
1518 spline, i, -1.f, &derivative, status))
1519 ts_bspline_domain(&derivative, &min, &max);
1520 TS_CALL(try, err, ts_bspline_eval(
1521 &derivative, min, &first, status))
1522 TS_CALL(try, err, ts_bspline_eval(
1523 &derivative, max, &last, status))
1524 *closed = ts_distance(
1525 ts_int_deboornet_access_result(&first),
1526 ts_int_deboornet_access_result(&last),
1527 dim) <= epsilon ? 1 : 0;
1528 ts_bspline_free(&derivative);
1529 ts_deboornet_free(&first);
1530 ts_deboornet_free(&last);
1531 if (!*closed)
1532 TS_RETURN_SUCCESS(status)
1533 }
1534 TS_FINALLY
1535 ts_bspline_free(&derivative);
1536 ts_deboornet_free(&first);
1537 ts_deboornet_free(&last);
1538 TS_END_TRY_RETURN(err)
1539}
1540
1541tsError
1542ts_bspline_compute_rmf(const tsBSpline *spline,
1543 const tsReal *knots,
1544 size_t num,
1545 int has_first_normal,
1546 tsFrame *frames,
1547 tsStatus *status)
1548{
1549 tsError err;
1550 size_t i;
1551 tsReal fx, fy, fz, fmin;
1552 tsReal xc[3], xn[3], v1[3], c1, v2[3], c2, rL[3], tL[3];
1553 tsBSpline deriv = ts_bspline_init();
1554 tsDeBoorNet curr = ts_deboornet_init();
1555 tsDeBoorNet next = ts_deboornet_init();
1556
1557 if (num < 1)
1558 TS_RETURN_SUCCESS(status);
1559
1560 TS_TRY(try, err, status)
1561 TS_CALL(try, err, ts_int_deboornet_new(
1562 spline, &curr, status))
1563 TS_CALL(try, err, ts_int_deboornet_new(
1564 spline, &next, status))
1565 TS_CALL(try, err, ts_bspline_derive(
1566 spline, 1, (tsReal) -1.0, &deriv, status))
1567
1568 /* Set position. */
1569 TS_CALL(try, err, ts_int_bspline_eval_woa(
1570 spline, knots[0], &curr, status))
1571 ts_vec3_set(frames[0].position,
1572 ts_int_deboornet_access_result(&curr),
1573 ts_bspline_dimension(spline));
1574 /* Set tangent. */
1575 TS_CALL(try, err, ts_int_bspline_eval_woa(
1576 &deriv, knots[0], &curr, status))
1577 ts_vec3_set(frames[0].tangent,
1578 ts_int_deboornet_access_result(&curr),
1579 ts_bspline_dimension(&deriv));
1580 ts_vec_norm(frames[0].tangent, 3, frames[0].tangent);
1581 /* Set normal. */
1582 if (!has_first_normal) {
1583 fx = (tsReal) fabs(frames[0].tangent[0]);
1584 fy = (tsReal) fabs(frames[0].tangent[1]);
1585 fz = (tsReal) fabs(frames[0].tangent[2]);
1586 fmin = fx; /* x is min => 1, 0, 0 */
1587 ts_vec3_init(frames[0].normal,
1588 (tsReal) 1.0,
1589 (tsReal) 0.0,
1590 (tsReal) 0.0);
1591 if (fy < fmin) { /* y is min => 0, 1, 0 */
1592 fmin = fy;
1593 ts_vec3_init(frames[0].normal,
1594 (tsReal) 0.0,
1595 (tsReal) 1.0,
1596 (tsReal) 0.0);
1597 }
1598 if (fz < fmin) { /* z is min => 0, 0, 1 */
1599 ts_vec3_init(frames[0].normal,
1600 (tsReal) 0.0,
1601 (tsReal) 0.0,
1602 (tsReal) 1.0);
1603 }
1604 ts_vec3_cross(frames[0].tangent,
1605 frames[0].normal,
1606 frames[0].normal);
1607 ts_vec_norm(frames[0].normal, 3, frames[0].normal);
1608 if (ts_bspline_dimension(spline) >= 3) {
1609 /* In 3D (and higher) an additional rotation of
1610 the normal along the tangent is needed in
1611 order to let the normal extend sideways (as
1612 it does in 2D and lower). */
1613 ts_vec3_cross(frames[0].tangent,
1614 frames[0].normal,
1615 frames[0].normal);
1616 }
1617 } else {
1618 /* Never trust user input! */
1619 ts_vec_norm(frames[0].normal, 3, frames[0].normal);
1620 }
1621 /* Set binormal. */
1622 ts_vec3_cross(frames[0].tangent,
1623 frames[0].normal,
1624 frames[0].binormal);
1625
1626 for (i = 0; i < num - 1; i++) {
1627 /* Eval current and next point. */
1628 TS_CALL(try, err, ts_int_bspline_eval_woa(
1629 spline, knots[i], &curr, status))
1630 TS_CALL(try, err, ts_int_bspline_eval_woa(
1631 spline, knots[i+1], &next, status))
1632 ts_vec3_set(xc, /* xc is now the current point */
1633 ts_int_deboornet_access_result(&curr),
1634 ts_bspline_dimension(spline));
1635 ts_vec3_set(xn, /* xn is now the next point */
1636 ts_int_deboornet_access_result(&next),
1637 ts_bspline_dimension(spline));
1638
1639 /* Set position of U_{i+1}. */
1640 ts_vec3_set(frames[i+1].position, xn, 3);
1641
1642 /* Compute reflection vector of R_{1}. */
1643 ts_vec_sub(xn, xc, 3, v1);
1644 c1 = ts_vec_dot(v1, v1, 3);
1645
1646 /* Compute r_{i}^{L} = R_{1} * r_{i}. */
1647 rL[0] = (tsReal) 2.0 / c1;
1648 rL[1] = ts_vec_dot(v1, frames[i].normal, 3);
1649 rL[2] = rL[0] * rL[1];
1650 ts_vec_mul(v1, 3, rL[2], rL);
1651 ts_vec_sub(frames[i].normal, rL, 3, rL);
1652
1653 /* Compute t_{i}^{L} = R_{1} * t_{i}. */
1654 tL[0] = (tsReal) 2.0 / c1;
1655 tL[1] = ts_vec_dot(v1, frames[i].tangent, 3);
1656 tL[2] = tL[0] * tL[1];
1657 ts_vec_mul(v1, 3, tL[2], tL);
1658 ts_vec_sub(frames[i].tangent, tL, 3, tL);
1659
1660 /* Compute reflection vector of R_{2}. */
1661 TS_CALL(try, err, ts_int_bspline_eval_woa(
1662 &deriv, knots[i+1], &next, status))
1663 ts_vec3_set(xn, /* xn is now the next tangent */
1664 ts_int_deboornet_access_result(&next),
1665 ts_bspline_dimension(&deriv));
1666 ts_vec_norm(xn, 3, xn);
1667 ts_vec_sub(xn, tL, 3, v2);
1668 c2 = ts_vec_dot(v2, v2, 3);
1669
1670 /* Compute r_{i+1} = R_{2} * r_{i}^{L}. */
1671 ts_vec3_set(xc, /* xc is now the next normal */
1672 frames[i+1].normal, 3);
1673 xc[0] = (tsReal) 2.0 / c2;
1674 xc[1] = ts_vec_dot(v2, rL, 3);
1675 xc[2] = xc[0] * xc[1];
1676 ts_vec_mul(v2, 3, xc[2], xc);
1677 ts_vec_sub(rL, xc, 3, xc);
1678 ts_vec_norm(xc, 3, xc);
1679
1680 /* Compute vector s_{i+1} of U_{i+1}. */
1681 ts_vec3_cross(xn, xc, frames[i+1].binormal);
1682
1683 /* Set vectors t_{i+1} and r_{i+1} of U_{i+1}. */
1684 ts_vec3_set(frames[i+1].tangent, xn, 3);
1685 ts_vec3_set(frames[i+1].normal, xc, 3);
1686 }
1687 TS_FINALLY
1688 ts_bspline_free(&deriv);
1689 ts_deboornet_free(&curr);
1690 ts_deboornet_free(&next);
1691 TS_END_TRY_RETURN(err)
1692}
1693
1694
1695tsError
1696ts_bspline_chord_lengths(const tsBSpline *spline,
1697 const tsReal *knots,
1698 size_t num,
1699 tsReal *lengths,
1700 tsStatus *status)
1701{
1702 tsError err;
1703 tsReal dist, lst_knot, cur_knot;
1704 size_t i, dim = ts_bspline_dimension(spline);
1705 tsDeBoorNet lst = ts_deboornet_init();
1706 tsDeBoorNet cur = ts_deboornet_init();
1707 tsDeBoorNet tmp = ts_deboornet_init();
1708
1709 if (num == 0) TS_RETURN_SUCCESS(status);
1710
1711 TS_TRY(try, err, status)
1712 TS_CALL(try, err, ts_int_deboornet_new(
1713 spline, &lst, status))
1714 TS_CALL(try, err, ts_int_deboornet_new(
1715 spline, &cur, status))
1716
1717 /* num >= 1 */
1718 TS_CALL(try, err, ts_int_bspline_eval_woa(
1719 spline, knots[0], &lst, status));
1720 lengths[0] = (tsReal) 0.0;
1721
1722 for (i = 1; i < num; i++) {
1723 TS_CALL(try, err, ts_int_bspline_eval_woa(
1724 spline, knots[i], &cur, status));
1725 lst_knot = ts_deboornet_knot(&lst);
1726 cur_knot = ts_deboornet_knot(&cur);
1727 if (cur_knot < lst_knot) {
1728 TS_THROW_1(try, err, status, TS_KNOTS_DECR,
1729 "decreasing knot at index: %lu",
1730 (unsigned long) i)
1731 }
1732 dist = ts_distance(ts_deboornet_result_ptr(&lst),
1733 ts_deboornet_result_ptr(&cur),
1734 dim);
1735 lengths[i] = lengths[i-1] + dist;
1736 ts_deboornet_move(&lst, &tmp);
1737 ts_deboornet_move(&cur, &lst);
1738 ts_deboornet_move(&tmp, &cur);
1739 }
1740 TS_FINALLY
1741 ts_deboornet_free(&lst);
1742 ts_deboornet_free(&cur);
1743 TS_END_TRY_RETURN(err)
1744}
1745
1746
1747tsError
1748ts_bspline_sub_spline(const tsBSpline *spline,
1749 tsReal knot0,
1750 tsReal knot1,
1751 tsBSpline *sub,
1752 tsStatus *status)
1753{
1754 int reverse; /* reverse `spline`? (if `knot0 > knot1`) */
1755 tsReal *tmp = NULL; /* a buffer to swap control points */
1756 tsReal min, max; /* domain of `spline` */
1757 size_t dim, deg, order; /* properties of `spline` (and `sub`) */
1758 tsBSpline worker; /* stores the result of the `split' operations */
1759 tsReal *ctrlp, *knots; /* control points and knots of `worker` */
1760 size_t k0, k1; /* indices returned by the `split' operations */
1761 size_t c0, c1; /* indices of the control points to be moved */
1762 size_t nc, nk; /* number of control points and knots of `sub` */
1763 size_t i; /* for various needs */
1764 tsError err; /* for local try-catch block */
1765
1766 /* Make sure that `worker` points to `NULL'. This allows us to call
1767 * `ts_bspline_free` in `TS_CATCH` without further checks. Also, `NULL'
1768 * serves as an indicator of whether `ts_bspline_split` has been called
1769 * on `spline` at least once (if not, `worker` needs to be initialized
1770 * manually). */
1771 ts_int_bspline_init(&worker);
1772 INIT_OUT_BSPLINE(spline, sub)
1773
1774 ts_bspline_domain(spline, &min, &max);
1775 dim = ts_bspline_dimension(spline);
1776 deg = ts_bspline_degree(spline);
1777 order = ts_bspline_order(spline);
1778
1779 /* Cannot create valid knot vector from empty domain. */
1780 if (ts_knots_equal(knot0, knot1)) {
1781 TS_RETURN_0(status,
1783 "empty domain")
1784 }
1785
1786 /* Check for `reverse mode'. Reverse mode means that the copied sequence
1787 * of (sub) control points need to be reversed, forming a `backwards'
1788 * spline. */
1789 reverse = knot0 > knot1;
1790 if (reverse) { /* swap `knot0` and `knot1` */
1791 tmp = (tsReal *) malloc(dim * sizeof(tsReal));
1792 if (!tmp) TS_RETURN_0(status, TS_MALLOC, "out of memory");
1793 *tmp = knot0; /* `tmp` can hold at least one value */
1794 knot0 = knot1;
1795 knot1 = *tmp;
1796 }
1797
1798 TS_TRY(try, err, status)
1799 if (!ts_knots_equal(knot0 , min)) {
1800 TS_CALL(try , err, ts_bspline_split(
1801 spline, knot0, &worker, &k0, status))
1802 } else { k0 = deg; }
1803 if (!ts_knots_equal(knot1, max)) {
1804 TS_CALL(try , err, ts_bspline_split(
1805 /* If `NULL', the split operation
1806 above was not called. */
1807 !worker.pImpl ? spline : &worker,
1808 knot1, &worker, &k1, status))
1809 } else {
1810 k1 = ts_bspline_num_knots(
1811 /* If `NULL', the split operation
1812 above was not called. */
1813 !worker.pImpl ? spline : &worker) - 1;
1814 }
1815
1816 /* Set up `worker`. */
1817 if (!worker.pImpl) { /* => no split applied */
1818 TS_CALL(try, err, ts_bspline_copy(
1819 spline, &worker, status))
1820 /* Needed in `reverse mode'. */
1821 ctrlp = ts_int_bspline_access_ctrlp(&worker);
1822 knots = ts_int_bspline_access_knots(&worker);
1823 nc = ts_bspline_num_control_points(&worker);
1824 } else {
1825 c0 = (k0-deg) * dim;
1826 c1 = (k1-order) * dim;
1827 nc = ((c1-c0) / dim) + 1;
1828 nk = (k1-k0) + order;
1829
1830 /* Also needed in `reverse mode'. */
1831 ctrlp = ts_int_bspline_access_ctrlp(&worker);
1832 knots = ts_int_bspline_access_knots(&worker);
1833
1834 /* Move control points. */
1835 memmove(ctrlp,
1836 ctrlp + c0,
1837 nc * dim * sizeof(tsReal));
1838 /* Move knots. */
1839 memmove(ctrlp + nc * dim,
1840 knots + (k0-deg),
1841 nk * sizeof(tsReal));
1842
1843 /* Remove superfluous control points and knots from
1844 * the memory of `worker`. */
1845 worker.pImpl->n_knots = nk;
1846 worker.pImpl->n_ctrlp = nc;
1847 i = ts_int_bspline_sof_state(&worker);
1848 worker.pImpl = (tsBSplineImpl*)realloc(worker.pImpl, i);
1849 if (worker.pImpl == NULL) { /* unlikely to fail */
1850 TS_THROW_0(try, err, status, TS_MALLOC,
1851 "out of memory")
1852 }
1853 }
1854
1855 /* Reverse control points (if necessary). */
1856 if (reverse) {
1857 for (i = 0; i < nc / 2; i++) {
1858 memcpy(tmp,
1859 ctrlp + i * dim,
1860 dim * sizeof(tsReal));
1861 memmove(ctrlp + i * dim,
1862 ctrlp + (nc-1 - i) * dim,
1863 dim * sizeof(tsReal));
1864 memcpy(ctrlp + (nc-1 - i) * dim,
1865 tmp,
1866 dim * sizeof(tsReal));
1867 }
1868 }
1869
1870 /* Move `worker' to output parameter. */
1871 if (spline == sub) ts_bspline_free(sub);
1872 ts_bspline_move(&worker, sub);
1873 TS_CATCH(err)
1874 ts_bspline_free(&worker);
1875 TS_FINALLY
1876 if (tmp) free(tmp);
1877 TS_END_TRY_RETURN(err)
1878}
1879
1880void
1881ts_bspline_uniform_knot_seq(const tsBSpline *spline,
1882 size_t num,
1883 tsReal *knots)
1884{
1885 size_t i;
1886 tsReal min, max;
1887 if (num == 0) return;
1888 ts_bspline_domain(spline, &min, &max);
1889 for (i = 0; i < num; i++) {
1890 knots[i] = max - min;
1891 knots[i] *= (tsReal) i / (num - 1);
1892 knots[i] += min;
1893 }
1894 /* Set `knots[0]` after `knots[num - 1]` to ensure
1895 that `knots[0] = min` if `num` is `1'. */
1896 knots[num - 1] = max;
1897 knots[0] = min;
1898}
1899
1900tsError
1901ts_bspline_equidistant_knot_seq(const tsBSpline *spline,
1902 size_t num,
1903 tsReal *knots,
1904 size_t num_samples,
1905 tsStatus *status)
1906{
1907 tsError err;
1908 tsReal *samples = NULL, *lengths = NULL;
1909
1910 if (num == 0) TS_RETURN_SUCCESS(status);
1911 if (num_samples == 0) num_samples = 200;
1912
1913 samples = (tsReal *) malloc(2 * num_samples * sizeof(tsReal));
1914 if (!samples) TS_RETURN_0(status, TS_MALLOC, "out of memory");
1915 ts_bspline_uniform_knot_seq(spline, num_samples, samples);
1916 lengths = samples + num_samples;
1917 TS_TRY(try, err, status)
1918 TS_CALL(try, err, ts_bspline_chord_lengths(
1919 spline, samples, num_samples, lengths, status))
1920 TS_CALL(try, err, ts_chord_lengths_equidistant_knot_seq(
1921 samples, lengths, num_samples, num, knots, status))
1922 TS_FINALLY
1923 free(samples); /* cannot be NULL */
1924 /* free(lengths); NO! */
1925 TS_END_TRY_RETURN(err)
1926}
1935tsError
1936ts_int_bspline_resize(const tsBSpline *spline,
1937 int n,
1938 int back,
1939 tsBSpline *resized,
1940 tsStatus *status)
1941{
1942 const size_t deg = ts_bspline_degree(spline);
1943 const size_t dim = ts_bspline_dimension(spline);
1944 const size_t sof_real = sizeof(tsReal);
1945
1946 const size_t num_ctrlp = ts_bspline_num_control_points(spline);
1947 const size_t num_knots = ts_bspline_num_knots(spline);
1948 const size_t nnum_ctrlp = num_ctrlp + n;
1949 const size_t nnum_knots = num_knots + n;
1950 const size_t min_num_ctrlp_vec = n < 0 ? nnum_ctrlp : num_ctrlp;
1951 const size_t min_num_knots_vec = n < 0 ? nnum_knots : num_knots;
1952
1953 const size_t sof_min_num_ctrlp = min_num_ctrlp_vec * dim * sof_real;
1954 const size_t sof_min_num_knots = min_num_knots_vec * sof_real;
1955
1956 tsBSpline tmp;
1957 const tsReal* from_ctrlp = ts_int_bspline_access_ctrlp(spline);
1958 const tsReal* from_knots = ts_int_bspline_access_knots(spline);
1959 tsReal* to_ctrlp = NULL;
1960 tsReal* to_knots = NULL;
1962 tsError err;
1963
1964 if (n == 0) return ts_bspline_copy(spline, resized, status);
1965
1966 INIT_OUT_BSPLINE(spline, resized)
1967 TS_CALL_ROE(err, ts_bspline_new(
1968 nnum_ctrlp, dim, deg, TS_OPENED,
1969 &tmp, status))
1970 to_ctrlp = ts_int_bspline_access_ctrlp(&tmp);
1971 to_knots = ts_int_bspline_access_knots(&tmp);
1972
1973 /* Copy control points and knots. */
1974 if (!back && n < 0) {
1975 memcpy(to_ctrlp, from_ctrlp - n*dim, sof_min_num_ctrlp);
1976 memcpy(to_knots, from_knots - n , sof_min_num_knots);
1977 } else if (!back && n > 0) {
1978 memcpy(to_ctrlp + n*dim, from_ctrlp, sof_min_num_ctrlp);
1979 memcpy(to_knots + n , from_knots, sof_min_num_knots);
1980 } else {
1981 /* n != 0 implies back == true */
1982 memcpy(to_ctrlp, from_ctrlp, sof_min_num_ctrlp);
1983 memcpy(to_knots, from_knots, sof_min_num_knots);
1984 }
1985
1986 if (spline == resized)
1987 ts_bspline_free(resized);
1988 ts_bspline_move(&tmp, resized);
1989 TS_RETURN_SUCCESS(status)
1990}
1991
1992tsError
1993ts_bspline_derive(const tsBSpline *spline,
1994 size_t n,
1995 tsReal epsilon,
1996 tsBSpline *deriv,
1997 tsStatus *status)
1998{
1999 const size_t sof_real = sizeof(tsReal);
2000 const size_t dim = ts_bspline_dimension(spline);
2001 const size_t sof_ctrlp = dim * sof_real;
2002 size_t deg = ts_bspline_degree(spline);
2003 size_t num_ctrlp = ts_bspline_num_control_points(spline);
2004 size_t num_knots = ts_bspline_num_knots(spline);
2005
2006 tsBSpline worker;
2007 tsReal* ctrlp;
2008 tsReal* knots;
2010 size_t m, i, j, k, l;
2011 tsReal *fst, *snd;
2012 tsReal dist;
2013 tsReal kid1, ki1;
2014 tsReal span;
2016 tsBSpline swap;
2017 tsError err;
2018
2019 INIT_OUT_BSPLINE(spline, deriv)
2020 TS_CALL_ROE(err, ts_bspline_copy(spline, &worker, status))
2021 ctrlp = ts_int_bspline_access_ctrlp(&worker);
2022 knots = ts_int_bspline_access_knots(&worker);
2023
2024 TS_TRY(try, err, status)
2025 for (m = 1; m <= n; m++) { /* from 1st to n'th derivative */
2026 if (deg == 0) {
2027 ts_arr_fill(ctrlp, dim, 0.f);
2028 ts_bspline_domain(spline,
2029 &knots[0],
2030 &knots[1]);
2031 num_ctrlp = 1;
2032 num_knots = 2;
2033 break;
2034 }
2035 /* Check and, if possible, fix discontinuity. */
2036 for (i = 2*deg + 1; i < num_knots - (deg+1); i++) {
2037 if (!ts_knots_equal(knots[i], knots[i-deg]))
2038 continue;
2039 fst = ctrlp + (i - (deg+1)) * dim;
2040 snd = fst + dim;
2041 dist = ts_distance(fst, snd, dim);
2042 if (epsilon >= 0.f && dist > epsilon) {
2043 TS_THROW_1(try, err, status,
2045 "discontinuity at knot: %f",
2046 knots[i])
2047 }
2048 memmove(snd,
2049 snd + dim,
2050 (num_ctrlp - (i+1-deg)) * sof_ctrlp);
2051 memmove(&knots[i],
2052 &knots[i+1],
2053 (num_knots - (i+1)) * sof_real);
2054 num_ctrlp--;
2055 num_knots--;
2056 i += deg-1;
2057 }
2058 /* Derive continuous worker. */
2059 for (i = 0; i < num_ctrlp-1; i++) {
2060 for (j = 0; j < dim; j++) {
2061 k = i *dim + j;
2062 l = (i+1)*dim + j;
2063 ctrlp[k] = ctrlp[l] - ctrlp[k];
2064 kid1 = knots[i+deg+1];
2065 ki1 = knots[i+1];
2066 span = kid1 - ki1;
2067 if (span < TS_KNOT_EPSILON)
2068 span = TS_KNOT_EPSILON;
2069 ctrlp[k] *= deg;
2070 ctrlp[k] /= span;
2071 }
2072 }
2073 deg -= 1;
2074 num_ctrlp -= 1;
2075 num_knots -= 2;
2076 knots += 1;
2077 }
2078 TS_CALL(try, err, ts_bspline_new(
2079 num_ctrlp, dim, deg, TS_OPENED,
2080 &swap, status))
2081 memcpy(ts_int_bspline_access_ctrlp(&swap),
2082 ctrlp,
2083 num_ctrlp * sof_ctrlp);
2084 memcpy(ts_int_bspline_access_knots(&swap),
2085 knots,
2086 num_knots * sof_real);
2087 if (spline == deriv)
2088 ts_bspline_free(deriv);
2089 ts_bspline_move(&swap, deriv);
2090 TS_FINALLY
2091 ts_bspline_free(&worker);
2092 TS_END_TRY_RETURN(err)
2093}
2094
2095tsError
2096ts_int_bspline_insert_knot(const tsBSpline *spline,
2097 const tsDeBoorNet *net,
2098 size_t n,
2099 tsBSpline *result,
2100 tsStatus *status)
2101{
2102 const size_t deg = ts_bspline_degree(spline);
2103 const size_t order = ts_bspline_order(spline);
2104 const size_t dim = ts_bspline_dimension(spline);
2105 const tsReal knot = ts_deboornet_knot(net);
2106 const size_t k = ts_deboornet_index(net);
2107 const size_t mult = ts_deboornet_multiplicity(net);
2108 const size_t sof_real = sizeof(tsReal);
2109 const size_t sof_ctrlp = dim * sof_real;
2110
2111 size_t N;
2112 tsReal* from;
2113 tsReal* to;
2114 int stride;
2115 size_t i;
2117 tsReal *ctrlp_spline, *ctrlp_result;
2118 tsReal *knots_spline, *knots_result;
2119 size_t num_ctrlp_result;
2120 size_t num_knots_result;
2121
2122 tsError err;
2123
2124 INIT_OUT_BSPLINE(spline, result)
2125 if (n == 0)
2126 return ts_bspline_copy(spline, result, status);
2127 if (mult + n > order) {
2128 TS_RETURN_4(status, TS_MULTIPLICITY,
2129 "multiplicity(%f) (%lu) + %lu > order (%lu)",
2130 knot, (unsigned long) mult, (unsigned long) n,
2131 (unsigned long) order)
2132 }
2133
2134 TS_CALL_ROE(err, ts_int_bspline_resize(
2135 spline, (int)n, 1, result, status))
2136 ctrlp_spline = ts_int_bspline_access_ctrlp(spline);
2137 knots_spline = ts_int_bspline_access_knots(spline);
2138 ctrlp_result = ts_int_bspline_access_ctrlp(result);
2139 knots_result = ts_int_bspline_access_knots(result);
2140 num_ctrlp_result = ts_bspline_num_control_points(result);
2141 num_knots_result = ts_bspline_num_knots(result);
2142
2143 /* mult + n <= deg + 1 (order) with n >= 1
2144 * => mult <= deg
2145 * => regular evaluation
2146 * => N = h + 1 is valid */
2147 N = ts_deboornet_num_insertions(net) + 1;
2148
2149 /* 1. Copy the relevant control points and knots from `spline'.
2150 * 2. Copy the relevant control points and knots from `net'. */
2151
2152 /* 1.
2153 *
2154 * a) Copy left hand side control points from `spline'.
2155 * b) Copy right hand side control points from `spline'.
2156 * c) Copy left hand side knots from `spline'.
2157 * d) Copy right hand side knots form `spline'. */
2158 /*** Copy Control Points ***/
2159 memmove(ctrlp_result, ctrlp_spline, (k-deg) * sof_ctrlp); /* a) */
2160 from = (tsReal *) ctrlp_spline + dim*(k-deg+N);
2161 /* n >= 0 implies to >= from */
2162 to = ctrlp_result + dim*(k-deg+N+n);
2163 memmove(to, from, (num_ctrlp_result-n-(k-deg+N)) * sof_ctrlp); /* b) */
2164 /*** Copy Knots ***/
2165 memmove(knots_result, knots_spline, (k+1) * sof_real); /* c) */
2166 from = (tsReal *) knots_spline + k+1;
2167 /* n >= 0 implies to >= from */
2168 to = knots_result + k+1+n;
2169 memmove(to, from, (num_knots_result-n-(k+1)) * sof_real); /* d) */
2170
2171 /* 2.
2172 *
2173 * a) Copy left hand side control points from `net'.
2174 * b) Copy middle part control points from `net'.
2175 * c) Copy right hand side control points from `net'.
2176 * d) Copy knot from `net' (`knot'). */
2177 from = ts_int_deboornet_access_points(net);
2178 to = ctrlp_result + (k-deg)*dim;
2179 stride = (int)(N*dim);
2180
2181 /*** Copy Control Points ***/
2182 for (i = 0; i < n; i++) { /* a) */
2183 memcpy(to, from, sof_ctrlp);
2184 from += stride;
2185 to += dim;
2186 stride -= (int)dim;
2187 }
2188 memcpy(to, from, (N-n) * sof_ctrlp); /* b) */
2189
2190 from -= dim;
2191 to += (N-n)*dim;
2192 /* N = h+1 with h = deg-mult (ts_int_bspline_eval)
2193 * => N = deg-mult+1 = order-mult.
2194 *
2195 * n <= order-mult
2196 * => N-n+1 >= order-mult - order-mult + 1 = 1
2197 * => -(int)(N-n+1) <= -1. */
2198 stride = -(int)(N-n+1) * (int)dim;
2199
2200 for (i = 0; i < n; i++) { /* c) */
2201 memcpy(to, from, sof_ctrlp);
2202 from += stride;
2203 stride -= (int)dim;
2204 to += dim;
2205 }
2206 /*** Copy Knot ***/
2207 to = knots_result + k+1;
2208 for (i = 0; i < n; i++) { /* d) */
2209 *to = knot;
2210 to++;
2211 }
2212 TS_RETURN_SUCCESS(status)
2213}
2214
2215tsError
2216ts_bspline_insert_knot(const tsBSpline *spline,
2217 tsReal knot,
2218 size_t num,
2219 tsBSpline *result,
2220 size_t* k,
2221 tsStatus *status)
2222{
2223 tsDeBoorNet net;
2224 tsError err;
2225 INIT_OUT_BSPLINE(spline, result)
2226 ts_int_deboornet_init(&net);
2227 TS_TRY(try, err, status)
2228 TS_CALL(try, err, ts_bspline_eval(
2229 spline, knot, &net, status))
2230 TS_CALL(try, err, ts_int_bspline_insert_knot(
2231 spline, &net, num, result, status))
2232 ts_deboornet_free(&net);
2233 TS_CALL(try, err, ts_bspline_eval(
2234 result, knot, &net, status))
2235 *k = ts_deboornet_index(&net);
2236 TS_CATCH(err)
2237 *k = 0;
2238 TS_FINALLY
2239 ts_deboornet_free(&net);
2240 TS_END_TRY_RETURN(err)
2241}
2242
2243tsError
2244ts_bspline_split(const tsBSpline *spline,
2245 tsReal knot,
2246 tsBSpline *split,
2247 size_t* k,
2248 tsStatus *status)
2249{
2250 tsDeBoorNet net;
2251 tsError err;
2252 INIT_OUT_BSPLINE(spline, split)
2253 ts_int_deboornet_init(&net);
2254 TS_TRY(try, err, status)
2255 TS_CALL(try, err, ts_bspline_eval(
2256 spline, knot, &net, status))
2257 if (ts_deboornet_multiplicity(&net)
2258 == ts_bspline_order(spline)) {
2259 TS_CALL(try, err, ts_bspline_copy(
2260 spline, split, status))
2261 *k = ts_deboornet_index(&net);
2262 } else {
2263 TS_CALL(try, err, ts_int_bspline_insert_knot(
2264 spline, &net,
2265 ts_deboornet_num_insertions(&net) + 1,
2266 split, status))
2267 *k = ts_deboornet_index(&net) +
2268 ts_deboornet_num_insertions(&net) + 1;
2269 }
2270 TS_CATCH(err)
2271 *k = 0;
2272 TS_FINALLY
2273 ts_deboornet_free(&net);
2274 TS_END_TRY_RETURN(err)
2275}
2276
2277tsError
2278ts_bspline_tension(const tsBSpline *spline,
2279 tsReal beta,
2280 tsBSpline *out,
2281 tsStatus *status)
2282{
2283 const size_t dim = ts_bspline_dimension(spline);
2284 const size_t N = ts_bspline_num_control_points(spline);
2285 const tsReal* p0 = ts_int_bspline_access_ctrlp(spline);
2286 const tsReal* pn_1 = p0 + (N-1)*dim;
2287
2288 tsReal s;
2289 tsReal *ctrlp;
2290 size_t i, d;
2291 tsReal vec;
2292 tsError err;
2293
2294 TS_CALL_ROE(err, ts_bspline_copy(spline, out, status))
2295 ctrlp = ts_int_bspline_access_ctrlp(out);
2296 if (beta < (tsReal) 0.0) beta = (tsReal) 0.0;
2297 if (beta > (tsReal) 1.0) beta = (tsReal) 1.0;
2298 s = 1.f - beta;
2299
2300 for (i = 0; i < N; i++) {
2301 for (d = 0; d < dim; d++) {
2302 vec = ((tsReal)i / (N-1)) * (pn_1[d] - p0[d]);
2303 ctrlp[i*dim + d] = beta * ctrlp[i*dim + d] +
2304 s * (p0[d] + vec);
2305 }
2306 }
2307 TS_RETURN_SUCCESS(status)
2308}
2309
2310tsError
2311ts_bspline_to_beziers(const tsBSpline *spline,
2312 tsBSpline *beziers,
2313 tsStatus *status)
2314{
2315 const size_t deg = ts_bspline_degree(spline);
2316 const size_t order = ts_bspline_order(spline);
2317
2318 int resize;
2319 size_t k;
2320 tsReal u_min;
2321 tsReal u_max;
2323 tsBSpline tmp;
2324 tsReal *knots;
2325 size_t num_knots;
2327 tsError err;
2328
2329 INIT_OUT_BSPLINE(spline, beziers)
2330 TS_CALL_ROE(err, ts_bspline_copy(spline, &tmp, status))
2331 knots = ts_int_bspline_access_knots(&tmp);
2332 num_knots = ts_bspline_num_knots(&tmp);
2333
2334 TS_TRY(try, err, status)
2335 /* DO NOT FORGET TO UPDATE knots AND num_knots AFTER EACH
2336 * TRANSFORMATION OF tmp! */
2337
2338 /* Fix first control point if necessary. */
2339 u_min = knots[deg];
2340 if (!ts_knots_equal(knots[0], u_min)) {
2341 TS_CALL(try, err, ts_bspline_split(
2342 &tmp, u_min, &tmp, &k, status))
2343 resize = (int)(-1*deg + (deg*2 - k));
2344 TS_CALL(try, err, ts_int_bspline_resize(
2345 &tmp, resize, 0, &tmp, status))
2346 knots = ts_int_bspline_access_knots(&tmp);
2347 num_knots = ts_bspline_num_knots(&tmp);
2348 }
2349
2350 /* Fix last control point if necessary. */
2351 u_max = knots[num_knots - order];
2352 if (!ts_knots_equal(knots[num_knots - 1], u_max)) {
2353 TS_CALL(try, err, ts_bspline_split(
2354 &tmp, u_max, &tmp, &k, status))
2355 num_knots = ts_bspline_num_knots(&tmp);
2356 resize = (int)(-1*deg + (k - (num_knots - order)));
2357 TS_CALL(try, err, ts_int_bspline_resize(
2358 &tmp, resize, 1, &tmp, status))
2359 knots = ts_int_bspline_access_knots(&tmp);
2360 num_knots = ts_bspline_num_knots(&tmp);
2361 }
2362
2363 /* Split internal knots. */
2364 k = order;
2365 while (k < num_knots - order) {
2366 TS_CALL(try, err, ts_bspline_split(
2367 &tmp, knots[k], &tmp, &k, status))
2368 knots = ts_int_bspline_access_knots(&tmp);
2369 num_knots = ts_bspline_num_knots(&tmp);
2370 k++;
2371 }
2372
2373 if (spline == beziers)
2374 ts_bspline_free(beziers);
2375 ts_bspline_move(&tmp, beziers);
2376 TS_FINALLY
2377 ts_bspline_free(&tmp);
2378 TS_END_TRY_RETURN(err)
2379}
2380
2381tsError
2382ts_bspline_elevate_degree(const tsBSpline *spline,
2383 size_t amount,
2384 tsReal epsilon,
2385 tsBSpline *elevated,
2386 tsStatus * status)
2387{
2388 tsBSpline worker;
2389 size_t dim, order;
2390 tsReal *ctrlp, *knots;
2391 size_t num_beziers, i, a, c, d, offset, idx;
2392 tsReal f, f_hat, *first, *last;
2393 tsError err;
2394
2395 /* Trivial case. */
2396 if (amount == 0)
2397 return ts_bspline_copy(spline, elevated, status);
2398
2399 /* An overview of this algorithm can be found at:
2400 * https://pages.mtu.edu/~shene/COURSES/cs3621/LAB/curve/elevation.html */
2401 INIT_OUT_BSPLINE(spline, elevated);
2402 worker = ts_bspline_init();
2403 TS_TRY(try, err, status)
2404 /* Decompose `spline' into a sequence of bezier curves and make
2405 * space for the additional control points and knots that are
2406 * to be inserted. Results are stored in `worker'. */
2407 TS_CALL(try, err, ts_bspline_to_beziers(
2408 spline, &worker, status));
2409 num_beziers = ts_bspline_num_control_points(&worker) /
2410 ts_bspline_order(&worker);
2411 TS_CALL(try, err, ts_int_bspline_resize(
2412 /* Resize by the number of knots to be inserted. Note
2413 * that this creates too many control points (due to
2414 * increasing the degree), which are removed at the end
2415 * of this function. */
2416 &worker, (int) ((num_beziers+1) * amount), 1, &worker,
2417 status));
2418 dim = ts_bspline_dimension(&worker);
2419 order = ts_bspline_order(&worker);
2420 ctrlp = ts_int_bspline_access_ctrlp(&worker);
2421 knots = ts_int_bspline_access_knots(&worker);
2422
2423 /* Move all but the first bezier curve to their new location in
2424 * the control point array so that the additional control
2425 * points can be inserted without overwriting the others. Note
2426 * that iteration must run backwards. Otherwise, the moved
2427 * values overwrite each other. */
2428 for (i = num_beziers - 1; i > 0; i--) {
2429 /* `i' can be interpreted as the number of bezier
2430 * curves before the current bezier curve. */
2431
2432 /* Location of current bezier curve. */
2433 offset = i * order * dim;
2434 /* Each elevation inserts an additional control point
2435 * into every bezier curve. `i * amount' is the total
2436 * number of control points to be inserted before the
2437 * current bezier curve. */
2438 memmove(ctrlp + offset + (i * amount * dim),
2439 ctrlp + offset,
2440 dim * order * sizeof(tsReal));
2441 }
2442
2443 /* Move all but the first group of knots to their new location
2444 * in the knot vector so that the additional knots can be
2445 * inserted without overwriting the others. Note that iteration
2446 * must run backwards. Otherwise, the moved values overwrite
2447 * each other. */
2448 for (i = num_beziers; i > 0; i--) {
2449 /* Note that the number of knot groups is one more than
2450 * the number of bezier curves. `i' can be interpreted
2451 * as the number of knot groups before the current
2452 * group. */
2453
2454 /* Location of current knot group. */
2455 offset = i * order;
2456 /* Each elevation inserts an additional knot into every
2457 * group of knots. `i * amount' is the total number of
2458 * knots to be inserted before the current knot
2459 * group. */
2460 memmove(knots + offset + (i * amount),
2461 knots + offset,
2462 order * sizeof(tsReal));
2463 }
2464
2465 /* `worker' is now fully set up.
2466 * The following formulas are based on:
2467 * https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-elev.html */
2468 for (a = 0; a < amount; a++) {
2469 /* For each bezier curve... */
2470 for (i = 0; i < num_beziers; i++) {
2471 /* ... 1) Insert and update control points. */
2472
2473 /* Location of current bezier curve. Each
2474 * elevation (`a') inserts an additional
2475 * control point into every bezier curve and
2476 * increases the degree (`order') by one. The
2477 * location is thus made up of two parts:
2478 *
2479 * i) `i * order', which is the location taking
2480 * into account the increasing order but
2481 * neglecting the control points that are to be
2482 * inserted before the current bezier curve. It
2483 * can be seen as some sort of base location:
2484 * Where would the bezier curve be (with
2485 * respect to the current value of `order') if
2486 * no additional control points had to be
2487 * inserted?
2488 *
2489 * ii) `i * (amount - a)', which is the total
2490 * number of control points to be inserted
2491 * before the current bezier curve
2492 * (`i * amount') taking into account the
2493 * increasing order (`order' and `a' are
2494 * increased equally, thus, `a' compensates for
2495 * the increasing value of `order'). This part
2496 * adds the necessary offset to the base
2497 * location (`i * order'). */
2498 offset = (i * order + i * (amount - a)) * dim;
2499 /* Duplicate last control point to the new end
2500 * position (next control point). */
2501 memmove(ctrlp + offset + ((order) * dim),
2502 ctrlp + offset + ((order-1) * dim),
2503 dim * sizeof(tsReal));
2504 /* All but the outer control points must be
2505 * recalculated (domain: [1, order - 1]). By
2506 * traversing backwards, control points can be
2507 * modified in-place. */
2508 for (c = order - 1; c > 0; c--) {
2509 /* Location of current control point
2510 * within current bezier curve. */
2511 idx = offset + c * dim;
2512 f = (tsReal) c / (tsReal) (order);
2513 f_hat = 1 - f;
2514 for (d = 0; d < dim; d++) {
2515 /* For the sake of space, we
2516 * increment idx by d and
2517 * decrement it at the end of
2518 * this loop. */
2519 idx += d;
2520 ctrlp[idx] =
2521 f * ctrlp[idx - dim] +
2522 f_hat * ctrlp[idx];
2523 /* Reset idx. */
2524 idx -= d;
2525 }
2526 }
2527
2528 /* ...2) Increase the multiplicity of the
2529 * second knot group (maximum of the domain of
2530 * the current bezier curve) by one. Note that
2531 * this loop misses the last knot group (the
2532 * group of the last bezier curve) as there is
2533 * one more knot group than bezier curves to
2534 * process. Thus, the last group must be
2535 * increased separately after this loop. */
2536
2537 /* Location of current knot group. Each
2538 * elevation (`a') inserts an additional
2539 * knot into the knot vector of every bezier
2540 * curve and increases the degree (`order') by
2541 * one. The location is thus made up of two
2542 * parts:
2543 *
2544 * i) `i * order', which is the location taking
2545 * into account the increasing order but
2546 * neglecting the knots that are to be inserted
2547 * before the current knot group. It can be
2548 * seen as some sort of base location: Where
2549 * would the knot group be (with respect to the
2550 * current value of `order') if no additional
2551 * knots had to be inserted?
2552 *
2553 * ii) `i * (amount - a)', which is the total
2554 * number of knots to be inserted before the
2555 * current knot group (`i * amount') taking
2556 * into account the increasing order (`order'
2557 * and `a' are increased equally, thus, `a'
2558 * compensates for the increasing value of
2559 * `order'). This part adds the necessary
2560 * offset to the base location
2561 * (`i * order'). */
2562 offset = i * order + i * (amount - a);
2563 /* Duplicate knot. */
2564 knots[offset + order] = knots[offset];
2565 }
2566
2567 /* Increase the multiplicity of the very last knot
2568 * group (the second group of the last bezier curve)
2569 * by one. For more details, see knot duplication in
2570 * previous loop. */
2571 offset = num_beziers * order +
2572 num_beziers * (amount - a);
2573 knots[offset + order] = knots[offset];
2574
2575 /* Elevated by one. */
2576 order++;
2577 }
2578
2579 /* Combine bezier curves. */
2580 d = 0; /* Number of removed knots/control points. */
2581 for (i = 0; i < num_beziers - 1; i++) {
2582 /* Is the last control point of bezier curve `i' equal
2583 * to the first control point of bezier curve `i+1'? */
2584 last = ctrlp + (
2585 i * order /* base location of `i' */
2586 - d /* minus the number of removed values */
2587 + (order - 1) /* jump to last control point */
2588 ) * dim;
2589 first = last + dim; /* next control point */
2590 if (ts_distance(last, first, dim) <= epsilon) {
2591 /* Move control points. */
2592 memmove(last, first, (num_beziers - 1 - i) *
2593 order * dim * sizeof(tsReal));
2594
2595 /* Move knots. `last' is the last knot of the
2596 * second knot group of bezier curve `i'.
2597 * `first' is the first knot of the first knot
2598 * group of bezier curve `i+1'. The
2599 * calculations are quite similar to those for
2600 * the control points `last' and `first' (see
2601 * above). */
2602 last = knots + i * order - d + (2 * order - 1);
2603 first = last + 1;
2604 memmove(last, first, (num_beziers - 1 - i) *
2605 order * sizeof(tsReal));
2606
2607 /* Removed one knot/control point. */
2608 d++;
2609 }
2610 }
2611
2612 /* Repair internal state. */
2613 worker.pImpl->deg = order - 1;
2614 worker.pImpl->n_knots -= d;
2615 worker.pImpl->n_ctrlp = ts_bspline_num_knots(&worker) - order;
2616 memmove(ts_int_bspline_access_knots(&worker),
2617 knots, ts_bspline_sof_knots(&worker));
2618 worker.pImpl = (tsBSplineImpl*)realloc(worker.pImpl,
2619 ts_int_bspline_sof_state(&worker));
2620 if (worker.pImpl == NULL) {
2621 TS_THROW_0(try, err, status, TS_MALLOC,
2622 "out of memory")
2623 }
2624
2625 /* Move `worker' to output parameter. */
2626 if (spline == elevated)
2627 ts_bspline_free(elevated);
2628 ts_bspline_move(&worker, elevated);
2629 TS_FINALLY
2630 ts_bspline_free(&worker);
2631 TS_END_TRY_RETURN(err)
2632}
2633
2634tsError
2635ts_bspline_align(const tsBSpline *s1,
2636 const tsBSpline *s2,
2637 tsReal epsilon,
2638 tsBSpline *s1_out,
2639 tsBSpline *s2_out,
2640 tsStatus *status)
2641{
2642 tsBSpline s1_worker, s2_worker, *smaller, *larger;
2643 tsDeBoorNet net; /* the net of `smaller'. */
2644 size_t i, missing, remaining;
2645 tsReal min, max, shift, nextKnot;
2646 tsError err;
2647
2648 INIT_OUT_BSPLINE(s1, s1_out)
2649 INIT_OUT_BSPLINE(s2, s2_out)
2650 s1_worker = ts_bspline_init();
2651 s2_worker = ts_bspline_init();
2652 smaller = larger = NULL;
2653 TS_TRY(try, err, status)
2654 /* Set up `s1_worker' and `s2_worker'. After this
2655 * if-elseif-else-block, `s1_worker' and `s2_worker' have same
2656 * degree. */
2657 if (ts_bspline_degree(s1) < ts_bspline_degree(s2)) {
2658 TS_CALL(try, err, ts_bspline_elevate_degree(s1,
2659 ts_bspline_degree(s2) - ts_bspline_degree(s1),
2660 epsilon, &s1_worker, status))
2661 TS_CALL(try, err, ts_bspline_copy(
2662 s2, &s2_worker, status))
2663 } else if (ts_bspline_degree(s2) < ts_bspline_degree(s1)) {
2664 TS_CALL(try, err, ts_bspline_elevate_degree(s2,
2665 ts_bspline_degree(s1) - ts_bspline_degree(s2),
2666 epsilon, &s2_worker, status))
2667 TS_CALL(try, err, ts_bspline_copy(
2668 s1, &s1_worker, status))
2669 } else {
2670 TS_CALL(try, err, ts_bspline_copy(
2671 s1, &s1_worker, status))
2672 TS_CALL(try, err, ts_bspline_copy(
2673 s2, &s2_worker, status))
2674 }
2675
2676 /* Set up `smaller', `larger', and `net'. */
2677 if (ts_bspline_num_knots(&s1_worker) <
2678 ts_bspline_num_knots(&s2_worker)) {
2679 smaller = &s1_worker;
2680 larger = &s2_worker;
2681 } else {
2682 smaller = &s2_worker;
2683 larger = &s1_worker;
2684 }
2685 TS_CALL(try, err, ts_int_deboornet_new(
2686 smaller, &net, status))
2687
2688 /* Insert knots into `smaller' until it has the same number of
2689 * knots (and therefore the same number of control points) as
2690 * `larger'. */
2691 ts_bspline_domain(smaller, &min, &max);
2692 missing = remaining = ts_bspline_num_knots(larger) -
2693 ts_bspline_num_knots(smaller);
2694 shift = (tsReal) 0.0;
2695 if (missing > 0)
2696 shift = ( (tsReal) 1.0 / missing ) * (tsReal) 0.5;
2697 for (i = 0; remaining > 0; i++, remaining--) {
2698 nextKnot = (max - min) * ((tsReal)i / missing) + min;
2699 nextKnot += shift;
2700 TS_CALL(try, err, ts_int_bspline_eval_woa(
2701 smaller, nextKnot, &net, status))
2702 while (!ts_deboornet_num_insertions(&net)) {
2703 /* Linear exploration for next knot. */
2704 nextKnot += 5 * TS_KNOT_EPSILON;
2705 if (nextKnot > max) {
2706 TS_THROW_0(try, err, status,
2708 "no more knots for insertion")
2709 }
2710 TS_CALL(try, err, ts_int_bspline_eval_woa(
2711 smaller, nextKnot, &net, status))
2712 }
2713 TS_CALL(try, err, ts_int_bspline_insert_knot(
2714 smaller, &net, 1, smaller, status))
2715 }
2716
2717 if (s1 == s1_out)
2718 ts_bspline_free(s1_out);
2719 if (s2 == s2_out)
2720 ts_bspline_free(s2_out);
2721 ts_bspline_move(&s1_worker, s1_out);
2722 /* if `s1_out' == `s2_out', `s2_worker' must not be moved
2723 * because otherwise the memory of `s1_worker' is leaked
2724 * (`s2_worker' overrides `s1_worker'). */
2725 if (s1_out != s2_out)
2726 ts_bspline_move(&s2_worker, s2_out);
2727 TS_FINALLY
2728 ts_bspline_free(&s1_worker);
2729 ts_bspline_free(&s2_worker);
2730 ts_deboornet_free(&net);
2731 TS_END_TRY_RETURN(err)
2732}
2733
2734tsError
2735ts_bspline_morph(const tsBSpline *origin,
2736 const tsBSpline *target,
2737 tsReal t,
2738 tsReal epsilon,
2739 tsBSpline *out,
2740 tsStatus *status)
2741{
2742 tsBSpline origin_al, target_al; /* aligned origin and target */
2743 tsReal *origin_al_c, *origin_al_k; /* control points and knots */
2744 tsReal *target_al_c, *target_al_k; /* control points and knots */
2745
2746 /* Properties of `out'. */
2747 size_t deg, dim, num_ctrlp, num_knots;
2748 tsReal *ctrlp, *knots;
2749 tsBSpline tmp; /* temporary buffer if `out' must be resized */
2750
2751 tsReal t_hat;
2752 size_t i, offset, d;
2753 tsError err;
2754
2755 origin_al = ts_bspline_init();
2756 target_al = ts_bspline_init();
2757 TS_TRY(try, err, status)
2758 /* Clamp `t' to domain [0, 1] and set up `t_hat'. */
2759 if (t < (tsReal) 0.0) t = (tsReal) 0.0;
2760 if (t > (tsReal) 1.0) t = (tsReal) 1.0;
2761 t_hat = (tsReal) 1.0 - t;
2762
2763 /* Set up `origin_al' and `target_al'. */
2764 /* Degree must be elevated... */
2765 if (ts_bspline_degree(origin) != ts_bspline_degree(target) ||
2766 /* .. or knots (and thus control points) must be inserted. */
2767 ts_bspline_num_knots(origin) != ts_bspline_num_knots(target)) {
2768 TS_CALL(try, err, ts_bspline_align(
2769 origin, target, epsilon, &origin_al, &target_al,
2770 status));
2771 } else {
2772 /* Flat copy. */
2773 origin_al = *origin;
2774 target_al = *target;
2775 }
2776 origin_al_c = ts_int_bspline_access_ctrlp(&origin_al);
2777 origin_al_k = ts_int_bspline_access_knots(&origin_al);
2778 target_al_c = ts_int_bspline_access_ctrlp(&target_al);
2779 target_al_k = ts_int_bspline_access_knots(&target_al);
2780
2781 /* Set up `out'. */
2782 deg = ts_bspline_degree(&origin_al);
2783 num_ctrlp = ts_bspline_num_control_points(&origin_al);
2784 dim = ts_bspline_dimension(&origin_al);
2785 if (ts_bspline_dimension(&target_al) < dim)
2786 dim = ts_bspline_dimension(&target_al);
2787 if (out->pImpl == NULL) {
2788 TS_CALL(try, err, ts_bspline_new(num_ctrlp, dim, deg,
2789 TS_OPENED /* doesn't matter */, out, status))
2790 } else if (ts_bspline_degree(out) != deg ||
2791 ts_bspline_num_control_points(out) != num_ctrlp ||
2792 ts_bspline_dimension(out) != dim) {
2793 TS_CALL(try, err, ts_bspline_new(num_ctrlp, dim, deg,
2794 TS_OPENED /* doesn't matter */, &tmp, status))
2795 ts_bspline_free(out);
2796 ts_bspline_move(&tmp, out);
2797 }
2798 num_knots = ts_bspline_num_knots(out);
2799 ctrlp = ts_int_bspline_access_ctrlp(out);
2800 knots = ts_int_bspline_access_knots(out);
2801
2802 /* Interpolate control points. */
2803 for (i = 0; i < num_ctrlp; i++) {
2804 for (d = 0; d < dim; d++) {
2805 offset = i * dim + d;
2806 ctrlp[offset] = t * target_al_c[offset] +
2807 t_hat * origin_al_c[offset];
2808 }
2809 }
2810
2811 /* Interpolate knots. */
2812 for (i = 0; i < num_knots; i++) {
2813 knots[i] = t * target_al_k[i] +
2814 t_hat * origin_al_k[i];
2815 }
2816 TS_FINALLY
2817 if (origin->pImpl != origin_al.pImpl)
2818 ts_bspline_free(&origin_al);
2819 if (target->pImpl != target_al.pImpl)
2820 ts_bspline_free(&target_al);
2821 TS_END_TRY_RETURN(err)
2822}
2826#if !defined(TINYSPLINE_NO_SERIALIZATION)
2831tsError
2832ts_int_bspline_to_json(const tsBSpline *spline,
2833 JSON_Value **value,
2834 tsStatus *status)
2835{
2836 const size_t deg = ts_bspline_degree(spline);
2837 const size_t dim = ts_bspline_dimension(spline);
2838 const size_t len_ctrlp = ts_bspline_len_control_points(spline);
2839 const size_t len_knots = ts_bspline_num_knots(spline);
2840 const tsReal *ctrlp = ts_int_bspline_access_ctrlp(spline);
2841 const tsReal *knots = ts_int_bspline_access_knots(spline);
2842
2843 size_t i;
2844 tsError err;
2845
2846 JSON_Value *ctrlp_value;
2847 JSON_Value *knots_value;
2848 JSON_Object *spline_object;
2849 JSON_Array *ctrlp_array;
2850 JSON_Array *knots_array;
2851
2852 *value = ctrlp_value = knots_value = NULL;
2853 TS_TRY(values, err, status)
2854 /* Init memory. */
2855 *value = json_value_init_object();
2856 if (!*value) {
2857 TS_THROW_0(values, err, status, TS_MALLOC,
2858 "out of memory")
2859 }
2860 ctrlp_value = json_value_init_array();
2861 if (!ctrlp_value) {
2862 TS_THROW_0(values, err, status, TS_MALLOC,
2863 "out of memory")
2864 }
2865 knots_value = json_value_init_array();
2866 if (!knots_value) {
2867 TS_THROW_0(values, err, status, TS_MALLOC,
2868 "out of memory")
2869 }
2870
2871 /* Although the following functions cannot fail, that is, they
2872 * won't return NULL or JSONFailure, we nevertheless handle
2873 * unexpected return values. */
2874
2875 /* Init output. */
2876 spline_object = json_value_get_object(*value);
2877 if (!spline_object) {
2878 TS_THROW_0(values, err, status, TS_MALLOC,
2879 "out of memory")
2880 }
2881
2882 /* Set degree and dimension. */
2883 if (JSONSuccess != json_object_set_number(spline_object,
2884 "degree",
2885 (double) deg)) {
2886 TS_THROW_0(values, err, status, TS_MALLOC,
2887 "out of memory")
2888 }
2889 if (JSONSuccess != json_object_set_number(spline_object,
2890 "dimension",
2891 (double) dim)) {
2892 TS_THROW_0(values, err, status, TS_MALLOC,
2893 "out of memory")
2894 }
2895
2896 /* Set control points. */
2897 if (JSONSuccess != json_object_set_value(spline_object,
2898 "control_points",
2899 ctrlp_value)) {
2900 TS_THROW_0(values, err, status, TS_MALLOC,
2901 "out of memory")
2902 }
2903 ctrlp_array = json_array(ctrlp_value);
2904 if (!ctrlp_array) {
2905 TS_THROW_0(values, err, status, TS_MALLOC,
2906 "out of memory")
2907 }
2908 for (i = 0; i < len_ctrlp; i++) {
2909 if (JSONSuccess != json_array_append_number(
2910 ctrlp_array, (double) ctrlp[i])) {
2911 TS_THROW_0(values, err, status, TS_MALLOC,
2912 "out of memory")
2913 }
2914 }
2915
2916 /* Set knots. */
2917 if (JSONSuccess != json_object_set_value(spline_object,
2918 "knots",
2919 knots_value)) {
2920 TS_THROW_0(values, err, status, TS_MALLOC,
2921 "out of memory")
2922 }
2923 knots_array = json_array(knots_value);
2924 if (!knots_array) {
2925 TS_THROW_0(values, err, status, TS_MALLOC,
2926 "out of memory")
2927 }
2928 for (i = 0; i < len_knots; i++) {
2929 if (JSONSuccess != json_array_append_number(
2930 knots_array, (double) knots[i])) {
2931 TS_THROW_0(values, err, status, TS_MALLOC,
2932 "out of memory")
2933 }
2934 }
2935 TS_CATCH(err)
2936 if (*value)
2937 json_value_free(*value);
2938 if (ctrlp_value && !json_value_get_parent(ctrlp_value))
2939 json_value_free(ctrlp_value);
2940 if (knots_value && !json_value_get_parent(knots_value))
2941 json_value_free(knots_value);
2942 *value = NULL;
2943 TS_END_TRY_RETURN(err)
2944}
2945
2946tsError
2947ts_int_bspline_parse_json(const JSON_Value *spline_value,
2948 tsBSpline *spline,
2949 tsStatus *status)
2950{
2951 size_t deg, dim, len_ctrlp, num_knots;
2952 tsReal *ctrlp, *knots;
2953
2954 JSON_Object *spline_object;
2955 JSON_Value *deg_value;
2956 JSON_Value *dim_value;
2957 JSON_Value *ctrlp_value;
2958 JSON_Array *ctrlp_array;
2959 JSON_Value *knots_value;
2960 JSON_Array *knots_array;
2961 JSON_Value *real_value;
2962 size_t i;
2963 tsError err;
2964
2965 ts_int_bspline_init(spline);
2966
2967 /* Read spline object. */
2968 if (json_value_get_type(spline_value) != JSONObject)
2969 TS_RETURN_0(status, TS_PARSE_ERROR, "invalid json input")
2970 spline_object = json_value_get_object(spline_value);
2971 if (!spline_object)
2972 TS_RETURN_0(status, TS_PARSE_ERROR, "invalid json input")
2973
2974 /* Read degree. */
2975 deg_value = json_object_get_value(spline_object, "degree");
2976 if (json_value_get_type(deg_value) != JSONNumber)
2977 TS_RETURN_0(status, TS_PARSE_ERROR, "degree is not a number")
2978 if (json_value_get_number(deg_value) < -0.01f) {
2979 TS_RETURN_1(status, TS_PARSE_ERROR,
2980 "degree (%f) < 0",
2981 json_value_get_number(deg_value))
2982 }
2983 deg = (size_t) json_value_get_number(deg_value);
2984
2985 /* Read dimension. */
2986 dim_value = json_object_get_value(spline_object, "dimension");
2987 if (json_value_get_type(dim_value) != JSONNumber) {
2988 TS_RETURN_0(status, TS_PARSE_ERROR,
2989 "dimension is not a number")
2990 }
2991 if (json_value_get_number(dim_value) < 0.99f) {
2992 TS_RETURN_1(status, TS_PARSE_ERROR,
2993 "dimension (%f) < 1",
2994 json_value_get_number(deg_value))
2995 }
2996 dim = (size_t) json_value_get_number(dim_value);
2997
2998 /* Read length of control point vector. */
2999 ctrlp_value = json_object_get_value(spline_object, "control_points");
3000 if (json_value_get_type(ctrlp_value) != JSONArray) {
3001 TS_RETURN_0(status, TS_PARSE_ERROR,
3002 "control_points is not an array")
3003 }
3004 ctrlp_array = json_value_get_array(ctrlp_value);
3005 len_ctrlp = json_array_get_count(ctrlp_array);
3006 if (len_ctrlp % dim != 0) {
3007 TS_RETURN_2(status, TS_PARSE_ERROR,
3008 "len(control_points) (%lu) %% dimension (%lu) != 0",
3009 (unsigned long) len_ctrlp, (unsigned long) dim)
3010 }
3011
3012 /* Read number of knots. */
3013 knots_value = json_object_get_value(spline_object, "knots");
3014 if (json_value_get_type(knots_value) != JSONArray) {
3015 TS_RETURN_0(status, TS_PARSE_ERROR,
3016 "knots is not an array")
3017 }
3018 knots_array = json_value_get_array(knots_value);
3019 num_knots = json_array_get_count(knots_array);
3020
3021 /* Create spline. */
3022 TS_TRY(try, err, status)
3023 TS_CALL(try, err, ts_bspline_new(
3024 len_ctrlp/dim, dim, deg,
3025 TS_CLAMPED, spline, status))
3026 if (num_knots != ts_bspline_num_knots(spline))
3027 TS_THROW_2(try, err, status, TS_NUM_KNOTS,
3028 "unexpected num(knots): (%lu) != (%lu)",
3029 (unsigned long) num_knots,
3030 (unsigned long) ts_bspline_num_knots(spline))
3031
3032 /* Set control points. */
3033 ctrlp = ts_int_bspline_access_ctrlp(spline);
3034 for (i = 0; i < len_ctrlp; i++) {
3035 real_value = json_array_get_value(ctrlp_array, i);
3036 if (json_value_get_type(real_value) != JSONNumber)
3037 TS_THROW_1(try, err, status, TS_PARSE_ERROR,
3038 "control_points: value at index %lu is not a number",
3039 (unsigned long) i)
3040 ctrlp[i] = (tsReal) json_value_get_number(real_value);
3041 }
3042 TS_CALL(try, err, ts_bspline_set_control_points(
3043 spline, ctrlp, status))
3044
3045 /* Set knots. */
3046 knots = ts_int_bspline_access_knots(spline);
3047 for (i = 0; i < num_knots; i++) {
3048 real_value = json_array_get_value(knots_array, i);
3049 if (json_value_get_type(real_value) != JSONNumber)
3050 TS_THROW_1(try, err, status, TS_PARSE_ERROR,
3051 "knots: value at index %lu is not a number",
3052 (unsigned long) i)
3053 knots[i] = (tsReal) json_value_get_number(real_value);
3054 }
3055 TS_CALL(try, err, ts_bspline_set_knots(
3056 spline, knots, status))
3057 TS_CATCH(err)
3058 ts_bspline_free(spline);
3059 TS_END_TRY_RETURN(err)
3060}
3061
3062tsError
3063ts_bspline_to_json(const tsBSpline *spline,
3064 char **json,
3065 tsStatus *status)
3066{
3067 tsError err;
3068 JSON_Value *value = NULL;
3069 *json = NULL;
3070 TS_CALL_ROE(err, ts_int_bspline_to_json(spline, &value, status))
3071 *json = json_serialize_to_string_pretty(value);
3072 json_value_free(value);
3073 if (!*json)
3074 TS_RETURN_0(status, TS_MALLOC, "out of memory")
3075 TS_RETURN_SUCCESS(status)
3076}
3077
3078tsError
3079ts_bspline_parse_json(const char *json,
3080 tsBSpline *spline,
3081 tsStatus *status)
3082{
3083 tsError err;
3084 JSON_Value *value = NULL;
3085 ts_int_bspline_init(spline);
3086 TS_TRY(try, err, status)
3087 value = json_parse_string(json);
3088 if (!value) {
3089 TS_RETURN_0(status, TS_PARSE_ERROR,
3090 "invalid json input")
3091 }
3092 TS_CALL(try, err, ts_int_bspline_parse_json(
3093 value, spline, status))
3094 TS_FINALLY
3095 if (value)
3096 json_value_free(value);
3097 TS_END_TRY_RETURN(err)
3098}
3099
3100tsError
3101ts_bspline_save(const tsBSpline *spline,
3102 const char *path,
3103 tsStatus *status)
3104{
3105 tsError err;
3106 JSON_Status json_status;
3107 JSON_Value *value = NULL;
3108 TS_CALL_ROE(err, ts_int_bspline_to_json(spline, &value, status))
3109 json_status = json_serialize_to_file_pretty(value, path);
3110 json_value_free(value);
3111 if (json_status != JSONSuccess)
3112 TS_RETURN_0(status, TS_IO_ERROR, "unexpected io error")
3113 TS_RETURN_SUCCESS(status)
3114}
3115
3116tsError
3117ts_bspline_load(const char *path,
3118 tsBSpline *spline,
3119 tsStatus *status)
3120{
3121 tsError err;
3122 FILE *file = NULL;
3123 JSON_Value *value = NULL;
3124 ts_int_bspline_init(spline);
3125 TS_TRY(try, err, status)
3126 file = fopen(path, "r");
3127 if (!file) {
3128 TS_THROW_0(try, err, status, TS_IO_ERROR,
3129 "unable to open file")
3130 }
3131 value = json_parse_file(path);
3132 if (!value) {
3133 TS_THROW_0(try, err, status, TS_PARSE_ERROR,
3134 "invalid json input")
3135 }
3136 TS_CALL(try, err, ts_int_bspline_parse_json(
3137 value, spline, status))
3138 TS_FINALLY
3139 if (file) fclose(file);
3140 if (value) json_value_free(value);
3141 TS_CATCH(err)
3142 ts_bspline_free(spline);
3143 TS_END_TRY_RETURN(err)
3144}
3146#endif
3147
3148
3152void
3153ts_vec2_init(tsReal *out,
3154 tsReal x,
3155 tsReal y)
3156{
3157 out[0] = x;
3158 out[1] = y;
3159}
3160
3161void
3162ts_vec3_init(tsReal *out,
3163 tsReal x,
3164 tsReal y,
3165 tsReal z)
3166{
3167 out[0] = x;
3168 out[1] = y;
3169 out[2] = z;
3170}
3171
3172void
3173ts_vec4_init(tsReal *out,
3174 tsReal x,
3175 tsReal y,
3176 tsReal z,
3177 tsReal w)
3178{
3179 out[0] = x;
3180 out[1] = y;
3181 out[2] = z;
3182 out[3] = w;
3183}
3184
3185void
3186ts_vec2_set(tsReal *out,
3187 const tsReal *x,
3188 size_t dim)
3189{
3190 const size_t n = dim > 2 ? 2 : dim;
3191 memmove(out, x, n * sizeof(tsReal));
3192 if (dim < 2)
3193 ts_arr_fill(out + dim, 2 - dim, (tsReal) 0.0);
3194}
3195
3196void
3197ts_vec3_set(tsReal *out,
3198 const tsReal *x,
3199 size_t dim)
3200{
3201 const size_t n = dim > 3 ? 3 : dim;
3202 memmove(out, x, n * sizeof(tsReal));
3203 if (dim < 3)
3204 ts_arr_fill(out + dim, 3 - dim, (tsReal) 0.0);
3205}
3206
3207void
3208ts_vec4_set(tsReal *out,
3209 const tsReal *x,
3210 size_t dim)
3211{
3212 const size_t n = dim > 4 ? 4 : dim;
3213 memmove(out, x, n * sizeof(tsReal));
3214 if (dim < 4)
3215 ts_arr_fill(out + dim, 4 - dim, (tsReal) 0.0);
3216}
3217
3218void
3219ts_vec_add(const tsReal *x,
3220 const tsReal *y,
3221 size_t dim,
3222 tsReal *out)
3223{
3224 size_t i;
3225 for (i = 0; i < dim; i++)
3226 out[i] = x[i] + y[i];
3227}
3228
3229void
3230ts_vec_sub(const tsReal *x,
3231 const tsReal *y,
3232 size_t dim,
3233 tsReal *out)
3234{
3235 size_t i;
3236 if (x == y) {
3237 /* More stable version. */
3238 ts_arr_fill(out, dim, (tsReal) 0.0);
3239 return;
3240 }
3241 for (i = 0; i < dim; i++)
3242 out[i] = x[i] - y[i];
3243}
3244
3245tsReal
3246ts_vec_dot(const tsReal *x,
3247 const tsReal *y,
3248 size_t dim)
3249{
3250 size_t i;
3251 tsReal dot = 0;
3252 for (i = 0; i < dim; i++)
3253 dot += x[i] * y[i];
3254 return dot;
3255}
3256
3257tsReal
3258ts_vec_angle(const tsReal *x,
3259 const tsReal *y,
3260 tsReal *buf,
3261 size_t dim)
3262{
3263 const tsReal *x_norm, *y_norm;
3264 if (buf) {
3265 ts_vec_norm(x, dim, buf);
3266 ts_vec_norm(y, dim, buf + dim);
3267 x_norm = buf;
3268 y_norm = buf + dim;
3269 } else {
3270 x_norm = x;
3271 y_norm = y;
3272 }
3273 return (tsReal) (
3274 /* Use doubles as long as possible. */
3275 acos(ts_vec_dot(x_norm,
3276 y_norm,
3277 dim))
3278 * (180.0 / TS_PI) /* radiant to degree */
3279 );
3280}
3281
3282void
3283ts_vec3_cross(const tsReal *x,
3284 const tsReal *y,
3285 tsReal *out)
3286{
3287 tsReal a, b, c;
3288 a = x[1] * y[2] - x[2] * y[1];
3289 b = x[2] * y[0] - x[0] * y[2];
3290 c = x[0] * y[1] - x[1] * y[0];
3291 out[0] = a;
3292 out[1] = b;
3293 out[2] = c;
3294}
3295
3296void
3297ts_vec_norm(const tsReal *x,
3298 size_t dim,
3299 tsReal *out)
3300{
3301 size_t i;
3302 const tsReal m = ts_vec_mag(x, dim);
3303 if (m < TS_LENGTH_ZERO) {
3304 ts_arr_fill(out, dim, (tsReal) 0.0);
3305 return;
3306 }
3307 for (i = 0; i < dim; i++)
3308 out[i] = x[i] / m;
3309}
3310
3311tsReal
3312ts_vec_mag(const tsReal *x,
3313 size_t dim)
3314{
3315 size_t i;
3316 tsReal sum = 0;
3317 for (i = 0; i < dim; i++)
3318 sum += (x[i] * x[i]);
3319 return (tsReal) sqrt(sum);
3320}
3321
3322void
3323ts_vec_mul(const tsReal *x,
3324 size_t dim,
3325 tsReal val,
3326 tsReal *out)
3327{
3328 size_t i;
3329 for (i = 0; i < dim; i++)
3330 out[i] = x[i] * val;
3331}
3340tsError
3341ts_chord_lengths_length_to_knot(const tsReal *knots,
3342 const tsReal *lengths,
3343 size_t num,
3344 tsReal len,
3345 tsReal *knot,
3346 tsStatus *status)
3347{
3348 tsReal numer, denom, r, r_hat;
3349 size_t idx, low, high;
3350
3351 /* Handle spacial cases. */
3352 if (num == 0) { /* well... */
3353 TS_RETURN_0(status, TS_NO_RESULT, "empty chord lengths")
3354 }
3355 if (num == 1) { /* no computation needed */
3356 *knot = knots[0];
3357 TS_RETURN_SUCCESS(status)
3358 }
3359 if (lengths[num - 1] < TS_LENGTH_ZERO) { /* spline is too short */
3360 *knot = knots[0];
3361 TS_RETURN_SUCCESS(status)
3362 }
3363 if (len <= lengths[0]) { /* clamp `len' to lower bound */
3364 *knot = knots[0];
3365 TS_RETURN_SUCCESS(status)
3366 }
3367 if (len >= lengths[num - 1]) { /* clamp `len' to upper bound */
3368 *knot = knots[num - 1];
3369 TS_RETURN_SUCCESS(status)
3370 }
3371
3372 /* From now on: i) `len' is less than the last chord length in
3373 `lengths' and ii) `lengths' contains at least two values. Hence, the
3374 index (`idx') determined by the following binary search cannot be
3375 the last index in `knots' and `lengths', respectively (i.e., `idx <=
3376 num - 2`). It is therefore safe to access `knots' and `lengths' at
3377 index `idx + 1`. */
3378
3379 /* Binary search. Similar to how locating a knot within a knot vector
3380 is implemented in ::ts_int_bspline_find_knot. */
3381 low = 0;
3382 high = num - 1;
3383 idx = (low+high) / 2;
3384 while (len < lengths[idx] || len >= lengths[(idx) + 1]) {
3385 if (len < lengths[idx]) high = idx;
3386 else low = idx;
3387 idx = (low+high) / 2;
3388 }
3389
3390 /* Determine `knot' by linear interpolation. */
3391 denom = lengths[(idx) + 1] - lengths[idx];
3392 if (denom < TS_LENGTH_ZERO) { /* segment is too short */
3393 *knot = knots[idx];
3394 TS_RETURN_SUCCESS(status)
3395 }
3396 numer = len - lengths[idx];
3397 r = numer / denom; /* denom >= TS_LENGTH_ZERO */
3398 r_hat = (tsReal) 1.0 - r;
3399 *knot = r * knots[(idx) + 1] + r_hat * knots[idx];
3400 TS_RETURN_SUCCESS(status)
3401}
3402
3403tsError
3404ts_chord_lengths_t_to_knot(const tsReal *knots,
3405 const tsReal *lengths,
3406 size_t num,
3407 tsReal t,
3408 tsReal *knot,
3409 tsStatus *status)
3410{
3411 /* Delegate error handling. If `num' is `0`,
3412 `ts_chord_lengths_length_to_knot' doesn't read `len' at all. */
3413 tsReal len = num == 0 ? 0 : t * lengths[num - 1];
3414 return ts_chord_lengths_length_to_knot(knots,
3415 lengths,
3416 num,
3417 len,
3418 knot,
3419 status);
3420}
3421
3422tsError
3423ts_chord_lengths_equidistant_knot_seq(const tsReal *knots,
3424 const tsReal *lengths,
3425 size_t num,
3426 size_t num_knot_seq,
3427 tsReal *knot_seq,
3428 tsStatus *status)
3429{
3430 tsError err;
3431 size_t i;
3432 tsReal t, knot;
3433 if (num_knot_seq == 0) TS_RETURN_SUCCESS(status)
3434 TS_TRY(try, err, status)
3435 for (i = 0; i < num_knot_seq; i++) {
3436 t = (tsReal) i / (num_knot_seq - 1);
3437 TS_CALL(try, err, ts_chord_lengths_t_to_knot(
3438 knots, lengths, num, t, &knot, status))
3439 knot_seq[i] = knot;
3440 }
3441 /* Set `knot_seq[0]` after `knot_seq[num_knot_seq - 1]` to
3442 ensure that `knot_seq[0] = min` if `num_knot_seq` is
3443 `1'. Note that `num_knot_seq` and `num` can't be `0'. */
3444 knot_seq[num_knot_seq - 1] = knots[num - 1];
3445 knot_seq[0] = knots[0];
3446 TS_END_TRY_RETURN(err)
3447}
3456int ts_knots_equal(tsReal x,
3457 tsReal y)
3458{
3459 return fabs(x-y) < TS_KNOT_EPSILON ? 1 : 0;
3460}
3461
3462void ts_arr_fill(tsReal *arr,
3463 size_t num,
3464 tsReal val)
3465{
3466 size_t i;
3467 for (i = 0; i < num; i++)
3468 arr[i] = val;
3469}
3470
3471tsReal ts_distance(const tsReal *x,
3472 const tsReal *y,
3473 size_t dim)
3474{
3475 size_t i;
3476 tsReal sum = 0;
3477 for (i = 0; i < dim; i++)
3478 sum += (x[i] - y[i]) * (x[i] - y[i]);
3479 return (tsReal) sqrt(sum);
3480}
3483#ifdef _MSC_VER
3484#pragma warning(pop)
3485#endif
OSSIA_INLINE constexpr auto min(const T a, const U b) noexcept -> typename std::conditional<(sizeof(T) > sizeof(U)), T, U >::type
min function tailored for values
Definition math.hpp:125
OSSIA_INLINE constexpr auto max(const T a, const U b) noexcept -> typename std::conditional<(sizeof(T) > sizeof(U)), T, U >::type
max function tailored for values
Definition math.hpp:96
Definition tinyspline.h:718
struct tsBSplineImpl * pImpl
Definition tinyspline.h:719
Definition tinyspline.c:45
size_t deg
Definition tinyspline.c:46
size_t n_knots
Definition tinyspline.c:49
size_t dim
Definition tinyspline.c:47
size_t n_ctrlp
Definition tinyspline.c:48
Definition tinyspline.h:1308
struct tsDeBoorNetImpl * pImpl
Definition tinyspline.h:1309
Definition tinyspline.c:57
tsReal u
Definition tinyspline.c:58
size_t s
Definition tinyspline.c:60
size_t k
Definition tinyspline.c:59
size_t h
Definition tinyspline.c:61
size_t dim
Definition tinyspline.c:62
Definition tinyspline.h:665
Definition tinyspline.h:477
#define TS_MAX_NUM_KNOTS
Definition tinyspline.h:121
#define TS_PI
Definition tinyspline.h:108
#define TS_LENGTH_ZERO
Definition tinyspline.h:179
tsError
Definition tinyspline.h:426
@ TS_DEG_GE_NCTRLP
Definition tinyspline.h:437
@ TS_NO_RESULT
Definition tinyspline.h:467
@ TS_MULTIPLICITY
Definition tinyspline.h:443
@ TS_UNDERIVABLE
Definition tinyspline.h:452
@ TS_KNOTS_DECR
Definition tinyspline.h:446
@ TS_IO_ERROR
Definition tinyspline.h:458
@ TS_DIM_ZERO
Definition tinyspline.h:434
@ TS_NUM_KNOTS
Definition tinyspline.h:449
@ TS_NUM_POINTS
Definition tinyspline.h:470
@ TS_U_UNDEFINED
Definition tinyspline.h:440
@ TS_PARSE_ERROR
Definition tinyspline.h:461
@ TS_MALLOC
Definition tinyspline.h:431
@ TS_INDEX_ERROR
Definition tinyspline.h:464
#define TS_DOMAIN_DEFAULT_MAX
Definition tinyspline.h:135
#define TS_KNOT_EPSILON
Definition tinyspline.h:156
#define TS_DOMAIN_DEFAULT_MIN
Definition tinyspline.h:128
double tsReal
Definition tinyspline.h:213
tsBSplineType
Definition tinyspline.h:642
@ TS_CLAMPED
Definition tinyspline.h:647
@ TS_BEZIERS
Definition tinyspline.h:653
@ TS_OPENED
Definition tinyspline.h:644